
Klabukova DL, Mashentseva NG, Chernukha IМ, Fedulova LV, Nikonov IN, Laptev G.Yu, et al., Molecular Genetic Approach to the Fermented Horse Meat Microflora Screening. 
J Translational Diagn Technol. 2018;3(1):30-35. 30

 OPEN ACCESS                                                                                                                                                                         http://scidoc.org/JBR-JTDT.php

JBR Journal of  Translational Diagnostics and Technology (JBR-JTDT)

Molecular Genetic Approach to the Fermented Horse Meat Microflora Screening

           Research Article

Klabukova DL1, Mashentseva NG2, Chernukha IМ2*, Fedulova LV2, Nikonov IN3, Laptev G.Yu3, Iljina LА3, Zamaratskaia G4, Jyldyrym ЕА3

1 FGBOU VPO “Moscow State University of  Food Production”, Moscow, Russia. 
2 V.M. Gorbatov Federal Research Center for Food Systems of  Russian Academy of  Sciences, Moscow, Russia.
3 LLC «BIOTROPH», Saint Petersburg, Russia.
4 Department of  Food Science, Uppsala BioCenter, Swedish University of  Agricultural Sciences, Uppsala, Sweden.

Introduction

Nowadays, there is an increased awareness and demands among 
consumers for the safety of  food products. Food quality control 
is one the major priorities for food industry and consumers to 
ensure high quality and safe production. Monitoring and assess-
ment of  microbiological quality is a primarily health-based activity 
to prevent the microbial spoilage and food poisoning, and protect 
public health.

Microbiological safety assessment of  fermented meat products 
produced without thermal treatment requires special attention 
due to an increased risk for accumulation of  pathogenic micro-
flora. To prevent the microbial spoilage starter cultures with an-
tibacterial properties are used in fermented sausage production. 

Thus, it is also desirable to monitor starter cultures in order to 
control their development throughout the technological process 
and storage [1, 2]. Traditional microbiological and biochemical 
methods are usually cumbersome, time-consuming and often 
have limited accuracy. For example, traditional methods cannot 
detect non-culturable bacteria because of  their low metabolism 
and resistance to the changes in environmental conditions. Nev-
ertheless, non-culturable bacteria might remain viable and retain 
virulence. Therefore, information about the presence and diver-
sity of  the non-culturable forms of  bacteria is important both 
for understanding of  the ageing processes in fermented food and 
safety assessment [3].

To overcome issues of  traditional methods, molecular genetic ap-
proaches to detect, differentiate and identify microorganisms are 
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now widely used in many areas including food science [4]. A num-
ber of  studies on development and introduction of  such methods 
for meat product safety assessment is rapidly growing [5-9]. Some 
methods are based on polymerase chain reaction (PCR) such as 
specific-PCR, RAPD-PCR, PCR-DGGE, RFLP, AFLP, species-
specific-PCR, real-time-PCR and multiplex-PCR [10-11]. From 
these, PCR with species-specific primers is probably the most 
widely used [12]. 

Two subspecies of  Staphylococcus carnosus - Staphylococcus carnosus 
subsp. сarnosus and Staphylococcus carnosus subsp. utilis in starter cul-
tures were successfully determined using real time PCR and High 
resolution Melting (HRM) analysis [13]. Naravaneni and Jamil [14] 
used PCR method to identify the food borne pathogens Salmonella 
and Escherichia coli.

The terminal restriction fragment length polymorphism (T-
RFLP) technique is considered as a rapid and reliable tool for mi-
crobial community fingerprinting. T-RFLP approach is based on 
restriction fragment analysis of  a PCR amplified marker and au-
tomated sequencing gel technology. It allows to obtain the results 
with higher accuracy and resolution compared to other molecular 
technique [15]. In contrast to the real-time PCR which allows de-
tection of  only those microorganisms, for which the primers were 
selected, T-RFLP is used to detect all microorganisms including 
non-culturable. With an increasing demands on speed, ease of  
automation, accuracy and reproducibility of  microbiological 
analysis, T-RFLP appears to be an attractive molecular approach 
to speed up the microbiological assays and provide access to es-
sential information on microbiological quality and safety of  food 
products.

Horse meat is a part of  the traditional diet in Central Asia and in 
some European countries [16]. Although consumption of  horse 
meat nowadays is not widespread [17], interest in horse meat is 
growing because of  its high nutritional value [18-20] and lower 
environmentally harmful effects compared to beef  [21]. Horse 
meat is consumed either cooked or processed (cured and fer-
mented). Fermented horse meat sausage-like product Kazy is a 
habitual dish in several central Asian regions [22]. This is cured-
raw product which does not undergo heat treatment during the 
manufacture and considered as safe by consumers. Indeed, no 
outbreaks due to Kazy were reported. Yet, the importance of  fer-
mented meats as a source of  pathogens is well recognized [23]. To 
the best of  our knowledge, only limited information is available 
on microbiological quality of  horse meat. Gill and Landers (2005) 
demonstrated that the microbiological conditions of  raw horse 
meat at different stages of  processing are similar with these of  
beef. Alagić et al., [24] monitored changes in microflora during 
ripening of  horsemeat sausages and showed prevalence of  lactic 
acid bacteria, but also micrococci, yeast and fungi.

The aim of  the present study was to characterize microbial com-
munity of  the local fermented sausage-like product Kazy with 
respect to their microbiological safety. For this purpose, we used 
molecular genetic methods - T-RFLP and real-time PCR.

Materials and Methods

Fermented sausage-like product technology and sampling

Local fermented sausage-like product Kazy was used in the study. 

The product contained horse meat, horse fat, salt, honey and gar-
lic. To prepare the product, house meat was cut into 2–3 cm strips, 
followed by addition of  fat and salt. After mixing, the product was 
cured for 24 hours. Then, honey and minced garlic was added. 
After mixing, sausage batter was filled into natural casings, set-
tled at +4°C for 48 hours, gradually frozen to -10°C and ripened 
in well-ventilated environments for 1-1.5 month. For analysis of  
the product microflora on 5th day from the manufacturing date, 
4 randomly selected products were cut and 3 samples (1g) were 
taken from the inner part of  each product, homogenized in a 
ceramic mortar and pooled. The procedure was repeated 3 times. 
A total of  36 samples were collected, and 12 pooled samples were 
analysed.

DNA Extraction

The DNA was extracted with phenol/chloroform (1:1) solution 
and purified with the CTAB solution. Pooled sample (0.5 g) was 
transferred into an eppendorf  tube (1.5 ml) with a screw cap. 
Then, 500 µl of  buffer I (CTAB 2%; Tris-HCl 0.1M; EDTA-Na2 
20 mM; NaCl 1.4 M; pH 8.5) and 0.5 g of  glass beads (Helicon, 
Russia) were added to the sample. The sample was heated at 65°C 
for 15 min and homogenized on a personal Vortex V-1 (Biosan, 
Latvia) at 3000 rpm for 15 min; then, the heating process was 
repeated during 15 min. After that, the sample was centrifugedat 
14000 rpm for 10 min (Mini Spin, Eppendorf, Germany) with 
400 µl of  phenol/chloroform mixture (1:1), the supernatant was 
then transferred to a new eppendorf  tube and centrifuged again 
with 400 µl of  chloroform. Afterwards, DNA was precipitated 
in a centrifuge at 14000 rpm with 400 µl of  96% ethanol in the 
presence of  0.3 Мsodium acetate (Helicon, Russia) and dissolved 
in 100 µl of  TE buffer (Tris-HCl 10 mM; EDTA-Na2 1 mM) 
(Helicon, Russia).

PCR and T-RFLP

The method has been adapted and applied to meat products. 16S 
rRNA genes were amplified using the primers 63F (CAGGC-
CTAACACATGCAAGTC) with a tag at the 5’-end (fluorophore 
D4-WellRed) and 1492R (TACGGHTACCTTGTTACGACTT). 
The mixture for PCR contained 10 pM of  primers, 2.5 units of  
Taq polymerase (Fermentas, USA), Х10 buffer for Taq polymer-
ase (Fermentas, USA), 2 µl of  25 mM MgCl2 (Fermentas, USA), 
a mixture of  deoxynucleotide triphosphates (dATP, dGTP, dCTP, 
dTTP at final concentration of  150 µM), 1 µl of  DNA. The sam-
ple was adjusted to a volume of  20 µl with deionized water. PCR 
was performed in the amplifier MaxyGene (Axygen, USA) under 
the following conditions: 95 °С - 3 min, 35 cycles (95 °С - 30 s, 55 
°С - 30 s, 72 °С - 60 s), 72 °С - 10 min.

An amplified fragment was isolated from the agarose gel using the 
3М guanidine thiocyanate solution as following. An agarose block 
with the amplified fragments of  DNA was removed from the 
agarose gel and placed into eppendorf  tubes (1.5 ml). 100 µl of  
3М guanidine isothiocyanate contained 20 mM EDTA-Na2, 10 m 
МTris-HCl (pH 6.8) and40 mg/ml of  TritonX-100 (Helicon, Rus-
sia) was added to the block and heated to 65°С until the agarose 
block was completely dissolved. Then, the sample was mixed with 
20µl of  above described solution contained 40 mg/ml of  DNA 
sorbent Silica (Helicon, Russia) and incubated at the room tem-
perature for 10 min. Amplicon was precipitated with a sorbent in 
the centrifuge Mini Spin (Eppendorf, Germany) at 4000 rpm for 
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1 min. The sediment of  silica with DNA was washed with 100 µl 
of  solution contained 25% C2H5OH, 25% isopropanol, 100 mМ 
NaCl and 10 mМ TRIS-HCl, pH 8.0 (Helicon, Russia) and 70% 
ethanol. Then, the sediment was dried and the DNA was eluted in 
100 µl of  10 mМ Tris-HCl buffer (pH 8.0) (Helicon, Russia) for 
15 min at room temperature. Then, the solution was centrifuged 
at 14000 rpm for 3 min. and the purified DNA preparation was 
transferred into new tubes. 

The PCR products were digested with 10 units of  the restriction 
enzymes HaeIII, HhaI and MspI (Fermentas, USA) at 37°С for 
2 hours. The restriction digests were then purified with ethanol 
in an amount of  38 µl in the presence of  1.5 µl of  3M sodium 
acetate solution and dissolved in 10 µl of  SLS (Beckman Coulter, 
USA) with addition of  0.2 µl of  marker with molecular weight of  
600 bp (Beckman Coulter, USA). The fragments were analyzed by 
capillary electrophoresis (Frag4 program) with fluorescence de-
tection and automated sequencer CEQ8000 (Beckman Coulter, 
USA).

Peak sizes and areas were determined on the Fragment Analy-
sis software (Beckman Coulter, USA). Coefficient of  variations 
(CV%) were below 5%. T-RFLP electrophoregrams were ana-
lyzed using Fragment Sorter (http://www.oardc.ohio-state.edu/
trflpfragsort/index.php).

Real-time PCR

Determination of  the total number of  microorganisms and 
lactobacteria was performed by real-time PCR using the prim-
ers Eub338 5’-ACTCCTACGGGAGGCAGCAG-3’, Eub518 
5’-ATTACCGCGGCTGCTGG-3’ (Syntol, Russia). The regime 
of  PRC amplification was following: 95 °C - 3 min, (95 °C - 13 
s, 63 °C - 13 s, 72 °C - 30 s) 40 cycles, 72 °C - 5 min. (Guo X. et 
al., 2008).

Quantification of  bacteria of  the genus Lactobacillus was carried 
out using the primers Lact-F (AGAGGTAGTAACTGGCCTT-
TA) и Lact-R (GCGGAAACCTCCCAACA) (Syntol, Russia). 
The regime of  PRC amplification was as follows: 95 °C - 3 min, 
(95 °C - 30 s, 60 °C - 30 s, 72 °C - 1 min) 40 cycles, 72 °C - 5 min 
[27].

Amplification was carried out using «The reagent kit for perform-
ing real-time PCR with Taq DNA polymerase and antibodies in-

hibiting an activity of  the enzyme in the presence of  Eva Green 
dye» (LLC «NPO DNA-Technology») using the detecting ampli-
fier DTlite (LLC «NPO DNA-Technology») according to manu-
facture instructions.

Statistical analysis

The statistical analysis of  data obtained was carried out with the 
use of  STATISTICA 6.0 Software Package, by application of  the 
Student's t-test (differences at p<0.05 were considered statistically 
reliable). The mathematical treatment of  the data including calcu-
lation of  averages with standard errors (M ± m) was carried out.

Results and Discussion

Microbiological analyses of  fermented horse meat sausage-like 
product revealed an ordinary microbiological profile (Figure 1) 
with microflora mainly (approximately 80%) represented by safe 
and non-culturable microorganisms and to a lesser extent by con-
ditionally pathogenic microorganisms.

Pathogenic bacteria accounted for less than 1%. Conditionally 
pathogenic microflora was represented by actinobacteria Nocar-
dioides spp. and Microbacterium spp., Clostidium ramosum and Pseu-
domonas, whereas coliform bacteria was not detected (Figure. 
2, Table 1). Pathogenic microorganisms were represented by 
Сampylobacter lari. Nowadays, the acceptable limit for campylo-
bacter counts in fermented sausages is not specified by the Rus-
sian Legislation. Campylobacter is considered to be the main cause 
of  bacterial gastroenteritis in humans and is a significant public 
health burden. 

Although epidemiological studies repeatedly suggest that the most 
significant Campylobacter pathogen species are C. jejuni and C. coli, 
C. lari was also recognized as a human pathogen [25, 26]. EFSA 
[27] estimated the losses due campylobacteriosis in the EU in the 
amount of  € 2.4 billion a year. In this regard, there is growing 
demand for Campylobacter detection in foods which is challenging 
because most Campylobacter species are relatively metabolically in-
active, which makes it difficult to identify them by traditional mi-
crobiological or biochemical methods. A major course of  campy-
lobacteriosis cases in humans is consumption of  contaminated 
raw poultry meat [28], whereas contamination of  horse meat with 
Campylobacter is uncommon [29, 30]. However, the presence of  C. 
lari in the fermented horse meat sausage-like product in our study 

Figure 1. The ratio of  the different groups of  microorganisms detected in the “Kazi” sample.
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Figure 2. T-RFLP profile of  the bacterial community structure in the sausage.
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Table 1. “Bacterial community composition, %.

Peak % Species Family Order
Safe microflora
Lactobacteria

516 10.1 Leuconostoc mesenteroides Leuconostocaceae Lactobacillales
540 13.3 Lactobacillus kunkeei Lactobacillaceae Lactobacillales
543 30.5 Lactobacillus sp. Lactobacillaceae Lactobacillales

Bacilli
97 1.9 Bacillus subtilis Bacillaceae Bacillales
111 6.3 Staphylococcus carnosus Staphylococcaceae Bacillales
117 2.7 Brevibacillus brevi Paenibacillaceae Bacillales

Conditionally pathogenic microflora
Actinobacteria

240 6.3 Nocardioides sp. Nocardioidaceae Actinomycetales
246 9.9 Microbacteriumsp. Microbacteriaceae Actinomycetales

Clostridia
257 2.9 Clostidium ramosum Clostridiaceae Clostridiales

Pseudomonas 
140 0.3 Pseudomonas sp. Pseudomonadaсeae Pseudomonadales
454 0.3 Pseudomonas sp. Pseudomonadaсeae Pseudomonadales

Nonculturable bacteria
95 2.5 Uncultured bacterium
130 0.1 Uncultured bacterium
141 0.3 Uncultured bacterium
144 0.1 Uncultured bacterium
168 0.1 Uncultured bacterium
169 0.1 Uncultured bacterium
173 0.3 Uncultured bacterium
175 0.3 Uncultured bacterium
233 10.5 Uncultured bacterium
444 0.2 Uncultured bacterium
458 0.2 Uncultured bacterium
467 0.1 Uncultured bacterium

Pathogenic microflora
435 0.7 Сampylobacter lari Campylobacteraceae Campylobacterales
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highlights the need for further research. 

Non-culturable forms of  bacteria accounted for 14.8% in the in-
vestigated samples. Non-culturable forms of  bacteria are meta-
bolically active, but lost ability to grow on routine media. Bacteria 
enters non-culturable form occurs under unfavorable environ-
mental conditions, but becomes culturable when the unfavorable 
conditions are removed, and can pose health risks. 

The results of  the real-time PCR showed that lactic acid bacte-
ria in fermented horse meat sausage-like product accounted for 
4.00×104 ± 1.87×103 genomes/g or 50.6% of  the total microbial 
number. The T-RFLP analysis of  the same sample showed that 
lactic acid bacteria accounted for 53.9% of  the total microbial 
number (7.90×104 ± 3.01×103 genomes/g). These similarities in-
dicated that T-RFLP analysis can be successfully applied to char-
acterize microflora in meat products and is an excellent tool for 
rapid and accurate identification of  relevant bacteria.

In recent years, the application of  this method has expanded into 
the area of  meat safety. For example, T-RFLP-analysis was suc-
cessfully used to study microbial spoilage of  meat. Nieminen et 
al., [31] applied the T-RFLP method to examine psychrotrophic 
lactic acid bacteria (LAB) and Brochothrix thermosphacta communi-
ties in meat packed in modified atmosphere (MAP). Li et al., [32] 
characterized bacterial communities in beef  spoiled after 10 days 
of  aerobic storage at 4°C.

Rahkila et al., [33] isolated 222 psychrotrophic Lactococcus from the 
MAP-pork meat and identified with EcoRI and ClaI ribosomal 
patterns and phylogenetic analysis of  16S sequences, rpoA and 
pheS genes. Most microorganisms (N = 215) in that study were 
identified as Lactococcus piscium, while seven isolates identified as 
Lactococcus raffinolactis. The methods used have been shown to be 
reliable tools for Lactococcus species identification in meat.

T-RFLP-method is also used for seafood and fish bacterial com-
munity composition analysis. Tanaka et al., [34] described ex-
press system using 16S rDNA specified T-RFLP analysis to study 
microbial populations in fish. Database of  terminal restriction 
fragments was constructed based on 102 bacterial strains of  53 
species. T-RFLP system used gave results comparable to those 
obtained by the culture method in six fish samples with 71.4 to 
92.3% compliance in 7 hours.

The results from the present and previous studies suggested that 
T-RFLP analysis is a rapid and suitable tool for monitoring micro-
flora of  fermented sausages or sausage-like products. Moreover, 
this method eliminates or minimize issues related to traditional 
culture-dependent methods.

Conclusions

Real-time PCR and T-RFPL approaches were successfully applied 
for analysis of  microflora in fermented horse meat sausage-like 
product. We demonstrated that microflora in the fermented horse 
meat sausage-like product Kazy mainly consisted of  safe and 
non-culturable bacteria (approximately 80%). The remaining part 
was represented by the conditionally pathogenic microflora, while 
the pathogenic microorganisms (Campylobacter) accounted only for 
.0.7% of  total community. We suggest that real-time PCR and T-

RFPL approaches can be effectively used for research purposes 
for detection of  pathogenic and conditionally pathogenic micro-
flora, and in inspection programs.
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