Abstract

Actinomycosis is commonly known as “lumpy jaw” that is a specific disease characterized with mandibular osteomyelitis in cattle. In our study, malondialdehyde, superoxide dismutase and some biochemical parameter levels in cattle with Actinomycosis were investigated. Thirty cattle were used in this study; 15 number of these were used as a control group of healthy individuals. Out of fifteen were Actinomycosis group. Statistical analysis showed that, concentrations of malondialdehyde were higher (P<0.001) and superoxide dismutase concentrations were lower (P<0.001), catalase, glutathione peroxidase and glutathione levels were significantly lower (P<0.01) in the cattles with Actinomycosis than in healthy ones. Glucose, cholesterol and LDL levels were significantly increased (P<0.001), HDL levels were significantly decreased (P<0.001) and albumin concentration was decreased (P<0.01). The enzyme activities of ALT were significantly increased (P<0.05) and as to AST enzyme’s activities were decreased (P<0.05). There was no statistically significant differences for the total protein levels in the Actinomycosis Group.

Keywords: Actinomycosis; Cattle; Malondialdehyde; Oxidative Stress.

Introduction

Actinomycosis is commonly known as “lumpy jaw” that is a specific disease characterized with mandibular osteomyelitis in cattle [11] [Figure 1]. According to literature, Actinomycosis was first reported in human in 1857 [1]. Actinomycetes bovis is the primary etiologic agent of actinomycosis or lumpy jaw in cattle and is an important cause of economic losses in livestock because of its widespread occurrence and poor response to the routine clinical treatment [6, 13]. The losses occur directly from the debilitation of affected cattle and indirectly from the slaughter of animals [6]. The basic lesion in actinomycosis is represented by granulation tissue having small abscesses, sulfa granules, and occasionally draining sinus tracts. Involvement of adjacent bone frequently results in facial distortion, loose teeth, and dyspnea due to swelling in the nasal cavity [11].

Oxidative stress is defined as an imbalance between production and regulation of reactive oxygen species. Reactive oxygen species mainly free radicals are directly involved in oxidative damage of cellular macromolecules such as lipids, proteins and nucleic acids in tissues. They can produce a variety of pathological changes through lipid peroxidation and DNA damage. Malondialdehyde (MDA) is the breakdown product of the major chain reactions leading to the oxidation of polyunsaturated fatty acids and thus causing oxidative stress. There are also antioxidant defense systems
against different oxidants in the organism. These systems such as antioxidant vitamins, superoxide dismutase (SOD), catalase (CAT), glutathione (GSH) and glutathione peroxidase (GPx) protect the cells against lipid peroxidation [22]. The reactive oxygen species are reported to oxidise biomolecules and cause extensive lipid peroxidation in biological membranes, which lead to cell death and tissue injury. The antioxidant systems protect the cellular biomolecules against damage caused by free radicals. They involve enzymes such as SOD, GPx and CAT and non enzyme factors such as GSH and vitamins. Changes in circulating levels of the antioxidants are indications of the occurrence of oxidative stress [7].

Materials and Methods

Animals

Thirty Native Black Cattle were used in the study. The animals were obtained from Erzurum in the eastern part of Turkey, then divided into two groups of 15 in each group. Control group contained normal healthy animals (15 animal) and the other group consisted of actinomycosis animals (15 animal). The animals with Actinomycosis were determined based on clinical symptoms. The observed clinical symptoms; thickening of one or both lips, that is this thickening it is extended to the jaw from cheeks, due to the abscess tongue, lips, pharynx and upper jaw swelling of the lymph nodes. These animals had salivation, swallowing and chewing difficulty. Also observed in these animals as clinical symptoms, malnutrition and weakness because of the teeth loosening and difficulty. Also observed in these animals as clinical symptoms, malnutrition and weakness because of the teeth loosening and difficulty. This study was approved by the Ethics Committee of Ataturk University (Date: 19.10.2015, Ethics Approval Protocol number: 36643897-200).

Biochemical Analysis

Blood samples were taken according to the procedures from V. Jugularis. Whole blood was collected into heparinized tubes. Plasma was obtained from these whole blood samples by centrifugation (3000 rpm for 10 min) and used for the determination of the biochemical parameters. The levels of malondialdehyde were determined by Yoshioka et al., [23] in serum using react with tiobarbituric acid (TBA) reagent under acidic conditions to generate a pink colored product which determined at 532 nm as MMDA/L, was used as a standart Tetramethoxypropane.

SOD activity was determined using Sun et al., procedure [19] xanthine-xanthine oxidase system was used as superoxide generator, and nitroblue tetrazolium (NBT) was used as an indicator. SOD activity was then measured by the degree of inhibition of the reaction unit of enzyme provides 50% inhibition of NBT reduction. Results are determined as U/mL. CAT activities was based on spectrophotometric assay of Hydrogen peroxide and colorimetric method with Ammonium Molybdate. Results are determined as KU/L [8]; GPx levels were determined at 37 °C and 412 nm according to methods of Matkovics et al., Results are determined as U/mL [12]; GSH levels was measured by continuous reduction of 5,5'-dithiobis, 2-nitrobenzoic acid (DTNB) in the presence of glutathione reductase (GR), oxidized glutathione (GSSG) and NADPH, at 412nm according to method described by Tietze [20] with Biotek ELISA Reader (Bio Tek µQuant MQX200 Elisa reader/USA). The activities of plasma ALT, AST and measures of glucose, albumin, cholesterol, triglyceride, HDL, LDL and total protein were determined using commercial diagnostics kits with Mindray Perfect Plus 400 Autoanalysers.

Statistical Analysis

Independent t test was used for statistical analysis (SPSS, 20.0 version). Datas are expressed as mean ± standard deviation.

Results

Presented in Table 1 are concentrations of lipid peroxidation product (MDA) and SOD, CAT, GPx and GSH in the Control and Actinomycosis groups (mean ± SD).

Statistical analysis showed that, concentrations of malondialdehyde were higher (P<0.001) and superoxide dismutase concentrations were lower (P<0.001), catalase, glutathione peroxidase and glutathione levels were significantly lower (P<0.01) in the cattles with Actinomycosis than in healthy ones.

Glucose, ALT, AST, Triglycerides, Cholesterol, HDL, LDL, Total Protein and Albumin levels of Actinomycosis and Control groups are shown in Table 2.

Glucose, cholesterol and LDL levels were significantly increased (P<0.001), HDL levels were significantly decreased (P<0.001) in the Actinomycosis group according to control group. Triglyceride concentrations were markedly increased (P<0.01) and Albumin concentration was decreased (P<0.01). The enzyme activities of ALT was significantly increased (P<0.05) and as for AST enzyme's activities were decreased (P<0.05). There was no
Table 1. Levels Of Malondialdehyde, Superoxide Dismutase, Catalase, Glutathione Peroxidase and Glutathione Parameters In The Control And Actinomycosis Group.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>n</th>
<th>Control Group (X ± Sx)</th>
<th>Actinomycosis Group (X ± Sx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>MDA (mmol/L)</td>
<td>15</td>
<td>2.83 ± 0.06</td>
<td>3.79 ± 0.06</td>
</tr>
<tr>
<td>SOD (U/mL)</td>
<td>15</td>
<td>3.37 ± 0.04</td>
<td>1.76 ± 0.05</td>
</tr>
<tr>
<td>CAT (KU/L)</td>
<td>15</td>
<td>34.82 ± 3.73</td>
<td>21.14 ± 1.23</td>
</tr>
<tr>
<td>GPx (U/mL)</td>
<td>15</td>
<td>0.23 ± 0.03</td>
<td>0.13 ± 0.01</td>
</tr>
<tr>
<td>GSH (nmol/L)</td>
<td>15</td>
<td>0.69 ± 0.14</td>
<td>0.28 ± 0.03</td>
</tr>
</tbody>
</table>

*P<0.001, \(^{2}P<0.01 \)

Table 2. Levels of Some Biochemical Parameters in the Control and Actinomycosis Group.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>n</th>
<th>Control Group (X±Sx)</th>
<th>Actinomycosis Group (X±Sx)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Glucose (mg/dL)</td>
<td>15</td>
<td>64.80 ± 0.38</td>
<td>73.07 ± 1.021</td>
</tr>
<tr>
<td>ALT (U/L)</td>
<td>15</td>
<td>22.60 ± 0.13</td>
<td>20.07 ± 1.04</td>
</tr>
<tr>
<td>AST (U/L)</td>
<td>15</td>
<td>65.12 ± 0.19</td>
<td>72.93 ± 3.74</td>
</tr>
<tr>
<td>Triglycerid (g/dL)</td>
<td>15</td>
<td>24.05 ± 0.05</td>
<td>26.20 ± 0.85</td>
</tr>
<tr>
<td>Cholesterol (mg/dL)</td>
<td>15</td>
<td>95.83 ± 0.10</td>
<td>134.40 ± 5.82</td>
</tr>
<tr>
<td>HDL (mg/dL)</td>
<td>15</td>
<td>40.40 ± 0.12</td>
<td>20.07 ± 1.53</td>
</tr>
<tr>
<td>LDL (mg/dL)</td>
<td>15</td>
<td>50.62 ± 0.12</td>
<td>101.09 ± 5.65</td>
</tr>
<tr>
<td>Total Protein (g/dL)</td>
<td>15</td>
<td>7.40 ± 0.00</td>
<td>7.22 ± 0.21</td>
</tr>
<tr>
<td>Albumin (mg/dL)</td>
<td>15</td>
<td>3.59 ± 0.03</td>
<td>3.21 ± 0.12</td>
</tr>
</tbody>
</table>

*P<0.001, \(^{2}P<0.01, \) \(^{3}P<0.05, \) \(^{4}P>0.05 \)

Discussion

Actinomyces bovis is a symbiotic inhabitant of oral mucosa that gains access through the abrading and penetrating injury to the buccal mucosa and dental alveoli. Involvement of adjacent bone frequently results in facial distortion, loose teeth and dyspnea due to swelling in the nasal cavity. The most common manifestation of this disease in cattle is a rarefying osteomyelitis of the bones of the head, particularly mandible and maxilla, though the rare cases may involve soft tissues, particularly the alimentary tract [6].

Stoichiometric studies have shown that every disease process is capable of causing oxidative stress to the host, through the initiation of free radical mechanism. This oxidative stress brings about a misbalance in the antioxidant/pro-oxidant balance, such that the pro-oxidant state is favoured [15]. MDA is the main oxidative product of polyunsaturated fatty acids in lipid peroxidation. It can disrupt the structure of lipid membrane causing a serious effect on normal cell function. The changes in its content can reflect cell injury caused by reactive oxygen species (ROS) [9]. Disturbances of the oxidant/antioxidant balance resulting from the increased production of ROS are causative factors in the oxidative damage of cellular structures and molecules, such as lipids, proteins and nucleic acids. In particular, biological membranes that are rich in unsaturated fatty acids are cellular structures susceptible to free radical attack. Greater extent of lipid peroxidation in co-exposed unsaturated fatty acids are cellular structures susceptible to free radical insult. This oxidative stress brings about a misbalance in the antioxidant/pro-oxidant balance, such that the pro-oxidant state is favoured [15]. MDA is the main oxidative product of polyunsaturated fatty acids in lipid peroxidation. It can disrupt the structure of lipid membrane causing a serious effect on normal cell function. The changes in its content can reflect cell injury caused by reactive oxygen species (ROS) [9].

Antioxidant agents protect cells from oxidative stress damage. SOD, a chain breaking antioxidant enzyme, play an important role in protection against the deleterious effect of lipid peroxidation. SOD can prevent oxidative stress though catalyzing the dismutation reaction of ROS into \(\text{O}_2 \) and \(\text{H}_2\text{O}_2 \) in living organisms [4, 21]. Superoxide radicals are produced in mitochondria and endoplasmic reticulum as a consequence of auto-oxidation of electron transport chain components. SOD converts superoxide into hydrogen peroxide and oxygen [5]. Stress conditions, in which free radical generation occurs, result in the decrease in antioxidant enzyme activity, owing to their excessive utilisation [10]. The observed decrease in SOD activity in the Actinomycosis group could result from inactivation by \(\text{H}_2\text{O}_2 \). Decreased SOD activity in the present study is suggestive of free radical generation resulting in the depletion of this enzyme owing to its excessive utilisation.

CAT is considered by many scientists as an important and sensitive biomarker of oxidative stress, better than SOD. CAT also are the main enzymes of the enzymatic antioxidant defense system responsible for protection against an increase in ROS production. \(\text{H}_2\text{O}_2 \), formed by the catalytic reaction of SOD, is both a reactive form of oxygen and a normal cellular metabolite, and it is further detoxified by GPx and CAT. The catalabolism of \(\text{H}_2\text{O}_2 \) leads to...
the formation of the superoxide radical anion [10, 17]. The data of
the present study showed that CAT activity was significantly
decreased in the group with Actinomycosis. The reduced activities
of CAT could be due to their depletion or inhibition as a result of
the increased production of free radicals.

Glutathione is important for the detoxification of toxicants, thus
measurement of its activity is considered as a good indicator of
antioxidant status or oxidative stress. GSH is a major endogenous
antioxidant that participates in detoxification reactions and
counterbalances free radical mediated damage by eliminating the
compounds responsible for lipid peroxidation. There is an inverse
relationship between oxidative stress and glutathione levels
due to increase in the utilisation [7]. The decline in glutathione
levels in this study could be due to increased utilisation of this
intracellular antioxidant by GPs or Glutathione-s-transferase. In
addition, this declination can also be justified either due to the
inhibited synthesis of GSH or increased utilisation of GSH for
detoxification of toxicant-induced free radicals [3, 18].

GPx is the general name of an enzyme family with peroxidase
activity whose main biological role is to protect the organism
from oxidative damage. The biological function of GPx is to
reduce lipid hydroperoxides conversion to their corresponding
alcohols and to reduce free hydrogen peroxide reaction with [2].
Declines in circulating levels of the GPx could have been resulted
from the occurrence of oxidative stress.

As a result, the concentrations of malondialdehyde were higher
(P<0.001) and superoxide dismutase concentrations were lower
(P<0.001), catalase, glutathione peroxidase and glutathione
levels were significantly lower (P<0.01) in the cattles with
Actinomycosis than in healthy ones. Glucose, cholesterol and
LDL levels were significantly increased (P<0.001), HDL levels
were significantly decreased (P<0.001) in the Actinomycosis
Group according to control group. Triglyceride concentrations
were markedly increased (P<0.01) and albumin concentration
was decreased (P<0.01). The enzyme activities of ALT were
significantly increased (P<0.05) and as to AST enzyme’s activities
decreased (P<0.05). There was no statistically significant differences for the total protein levels in the Actinomycosis Group.

References

actinomycosis presenting as soft tissue tumour: A case reportwith literature
molin C against chlorpyrifos oxidative stress in male mice. FAO. 97: 7–12.
[4]. Chakraborty SP, Roy S, Pramanik P (2016) In vitro dose and duration de-
pendent approaches for the assessment of ameliorative effects of nanocoju-
gated vancomycin at Staphylococcus aureus infection induced oxidative stress
[5]. Dubey N, Raina R, Khan AM (2012) Toxic effects of deltamethrin and fluo-
[6]. Farooq U, Qayyum A, Samad HA, Chaudhry HR, Ahmad N (2010) Field
[7]. Gill KK, Sandhu HS, Kaur R (2015) Evaluation of lipid peroxidation and
antioxidant status on fenvalate, nitrates and their co-exposure in Bubalus
and revision of serum catalase activity and revision of range of reference. Clin
peroxidase 1 expression, malondialdehyde levels and histological alterations
in the liver of Aceroschiisus fasciatus exposed to cadmium chloride. Gene
57(2): 210-218.
sis and degradation in leaves and the influence of interfering stres conditions.
Plant Physiol. 100(3): 1547–1555.
in lipid peroxidation and glutathione pathways. Laboratoryni Diagnost-
tika. 15: 248–249.
MHz electromagnetic field emitted from cellular phone on brain oxidative stress
and some vitamin levels of guinea pigs. Brain Res. 1169: 120–124.
[15]. Niki E (1996) Free radical- induced oxidative damage and nutritional oxi-
105-108.
stress in ecotoxicology: from the analysis of individual antioxidants to a more
[17]. Sinclair AJ (1993) Free radical mechanisms and vascular complications of
function of Drosophila melanogaster glutathione S-transferase DmGSTS1-1
(GST2) in conjugation of lipid peroxidation end products. Eur J Biochem.
268(10): 2912–2923.
[20]. Tieriet F (1969) Enzymic method for quantitativ determination of nano-
gram amounts of total and oxidized glutathione. Anal Biochem. 27(3): 502–
507.
dismutases (SODs) respond to bacterial challenge identified in the marbled
[23]. Yoshioka T, Kawada K, Shimada T, Mori M (1979) Lipid peroxidation in
maternal and cordblood and protective mechanism against activated- oxygen
subsequent stress removal on function of hepatic mitochondrial respiration,
522.