Multipotent Mesenchymal Stromal Cells Derived from the Bone Marrow Transported Over 12 Hours Change Their Main Characteristics

Petinati NA1, Shipounova IN2, Popova MD2, Drize NJ1, Kuzmina LA1, Parovichnikova EN1, Savchenko VG2

1Federal Government Budget Institution National Research Center for Hematology, Ministry of Health, Moscow, Russia.
2Faculty of Biology, Department of Molecular Immunology, Moscow State University, Russia.

Citation: Drize NJ et al., (2015) Multipotent Mesenchymal Stromal Cells Derived from the Bone Marrow Transported Over 12 Hours Change Their Main Characteristics. Int J Stem Cell Res Transplant 03(4), 118-119

Received: July 16, 2015
Accepted: August 05, 2015
Published: August 11, 2015

Copyright: Drize NJ 2015. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Many investigations have addressed the possibility of using multipotent mesenchymal stromal cells (MSCs) for treatment of various diseases due to their ability for tissue regeneration and unique immunomodulating capacities [1-3]. These stromal cells can be cultivated in vitro and represent adult, fibroblast-like cells that can differentiate into tissues of mesodermal origin [4]. Previous studies have attempted to develop the criteria for human MSC eligibility for therapeutic applications [5]. MSCs secrete various cytokines, growth factors and extracellular matrix molecules [4]. A randomized clinical trial (ClinicalTrials.gov NCT01941394) of MSCs application for graft versus host disease (GVHD) prophylaxis after allogeneic bone marrow transplantation has been ongoing at the National Research Center for Hematology since 2008 [6]. The trial was approved by a local ethical committee, and informed consent from donors and patients has been obtained according to the Helsinki Declaration. All donor derived MSCs (113 samples) characteristics such as cumulative cell production and relative expression level (REL) of several genes were routinely analyzed. MSCs were cultivated from bone marrow and analyzed as described [7]. Twelve of the bone marrow samples were obtained from unrelated donors. These samples had been transferred to the National Research Center for Hematology at recommended conditions at 4°C [8], a process that required more than 12 hours, usually 14-30 hours. The cumulative cell production of MSCs derived from these samples (N=12) was significantly decreased in comparison with MSCs derived from not transported (fresh, N=101) bone marrow, (5.1 ± 0.6) x 10^6 and (8.0 ± 0.9) x 10^6 per flask for 3 passages, respectively (p < 0.01). Dramatic changes in the REL of 7 genes were revealed in MSCs developed from transported bone marrow (Figure). The REL of CSF1, FGFR1 and PDGFRB decreased more than 3-fold (p < 0.0001), while those of VEGF, ICAM1 and VCAM1 decreased more than 2-fold (p < 0.05). The REL of FGFR2 increased 2-fold (p < 0.01). The observed decline in MSC production may be due to the decreased REL of growth factor and receptor genes. Increased expression of FGFR2 did not affect the production of MSCs and possibly was compensatory. Moreover, the concentration of colony-forming units fibroblast (CFU-F) in the bone marrow samples that had been transported dramatically decreased to 1.83±0.76 per 10^6 bone marrow cells (p < 0.0001) compared with samples from fresh bone marrow (27.0±2.8). The CFU-F concentration was found to be associated with the MSC growth parameters. The data suggests the decreased growth capacity of MSCs derived from transported bone marrow. At the same time no changes in REL of immunomodulating genes were revealed, that implies...
that such MSCs may be applicable for GVHD prophylaxis. Possible changes in the MSC growth characteristics should be considered for MSCs derived from bone marrow after more than 12 hours of transportation.

References