In the current study, we have experimentally and comparatively investigated and compared malignant human cancer cells and tissues before and after irradiating with synchrotron radiation using Nuclear Resonance Vibrational Spectroscopy (NRVS), Nuclear Inelastic Scattering Spectroscopy (NISS), Nuclear Inelastic Absorption Spectroscopy (NIAS) and Nuclear Resonant Inelastic X-Ray Scattering Spectroscopy (NRIXSS). It is clear that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passing of time (Figures 1-4) [1-119].

Figure 1. Nuclear Resonance Vibrational Spectroscopy (NRVS) analysis of malignant human cancer cells and tissues (a) before and (b) after irradiating with synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-119].

Figure 2. Nuclear Inelastic Scattering Spectroscopy (NISS) analysis of malignant human cancer cells and tissues (a) before and (b) after irradiating with synchrotron radiation in transformation process to benign human cancer cells and tissues with the passing of time [1-119].
It can be concluded that malignant human cancer cells and tissues have gradually transformed to benign human cancer cells and tissues under synchrotron radiation with the passing of time [1-119].

References

[18]. Heidari A. Measurement the Amount of Vitamin D2 (Ergocalciferol), Vitamin D3 (Cholecalciferol) and Absorbable Calcium (Ca2+), Iron (II)(Fe2+), Magnesium (Mg2+), Phosphate (PO4–) and Zinc (Zn2+) in Apricot Using High-Performance Liquid Chromatography (HPLC) and Spectroscopic Techniques. J Biom Biostat. 2016;7:292.
[19]. Heidari A. Spectroscopy and Quantum Mechanics of the Helium Dimer (He2), Neon Dimer (Ne2), Argon Dimer (Ar2), Krypton Dimer (Kr2), Xenon Dimer (Xe2), Radon Dimer (Rn2) and Ununoctium Dimer (Uuo2) Molecular Cations. Chem Sci J. 2016;7:e112.

Complete the document text as per the provided natural text.


