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Introduction

Over the past decades, successive downscaling of  the 
complementary metal-oxide-semiconductor (CMOS) transistors 
consistent with Moore’s law has contributed to the exponential 
progress in computing and knowledge technology. The amount 
of  transistors per microprocessor chip has doubled about every 
two years with increased clock speed or rate of  execution of  
instructions. The transistor size is approaching the elemental 
physical limit of  around 2–3 nm beyond which quantum tunneling 
and quantum uncertainties will make transistors unreliable to 
work in conventional circuits. Additionally, the performance gap 
between processing and memory units has increased dramatically, 
and therefore the data movement between these units within 
the conventional Von-Neumann architecture starts to be the 
foremost dominant factor for energy consumption and system 
throughput [4, 5]. This problem, widely referred to as the Von-
Neumann bottleneck, is going to be further exacerbated within 
the data-intensive applications like machine learning tasks. to deal 
with these issues, new materials, devices, and new computing 
architectures are now extensively investigated to enrich and 
possibly replace conventional CMOS devices and circuits. One 
such device may be a non-volatile Resistive Switching (RS) device. 

rather than using electrons and holes to store data in conventional 
memory units, RS devices store data by reconfiguring the interior 
ion (oxygen ion or metal cation) distribution in nanoscale solid-
state films.

A typical RS device stores data in the form of  different values of  
resistance, and has a simple two-terminal resistor-like structure 
with a functional thin film sandwiched by two electrodes, as 
schematically shown in Figure. 1. RS devices first received broad 
interest as they effectively reduce the performance gap between 
existing memory (i.e. static random-access memory (SRAM) and 
dynamic random-access memory (DRAM)) and non-volatile 
data storage solutions, and can potentially replace the above 
memoriesdue to the fast switching speed, low power operation, 
scalability and good reliability offered by RS devices [1].

Memristor Theory

Memristor characteristics and Relationships

Passive circuit theory can be described asa set of  relationships 
between electromagnetic quantities:

Abstract

High-density memories are required for various applications in the area of  signal and image processing, Digital system 
design, and neural networks. Researchers are looking for an intermediate solution to fill the gap between DRAM and Flash 
NAND in the memory hierarchy. The development of  Resistive Switching Technologies (RRAM) proposes a potential 
solution to this demand for fast, low cost, high density, and non-volatile memory. This paper discusses the schematic of  
Resistive Switching (RS) devices, The Principle and operation of  memristor crossbar array as memory, potential applications 
of  memristors as memory, Logic design applications, and neuromorphic computations.

*Corresponding Author: 
 Hamsavahini R,
 Department of  Electronics and Communication Engineering, BMSIT&M, Bangalore, India.
 Tel: 0741633550
 E-mail: hamsavahini@bmsit.in 

 Received: September 08, 2020
 Accepted: September 26, 2020
 Published: September 29, 2020

 Citation: Hamsavahini R, Saurabh Nagar, Kaustab Ghosh. A Review of  Resistor Switching Devices for Memory and Neuromorphic Computing Applications. Int J Nano Stud Technol. 
2020;9(1):135-139. doi: http://dx.doi.org/10.19070/2167-8685-2000025
 
 Copyright: Hamsavahini R© 2020. This is an open-access article distributed under the terms of  the Creative Commons Attribution License, which permits unrestricted use, distribution 
 and reproduction in any medium, provided the original author and source are credited.

http://dx.doi.org/10.19070/2167-8685-2000025


136

 OPEN ACCESS                                                                                                                                                                                 http://scidoc.org/IJNST.php

Hamsavahini R, Saurabh Nagar, Kaustab Ghosh. MA Review of  Resistor Switching Devices for Memory and Neuromorphic Computing Applications. Int J Nano Stud Technol. 
2020;9(1):135-139

1) Voltage vis the change inmagnetic flux Φ for time t
2) Current iis the change in electric charge q for time t
3) Resistor Ris a linear relationship between voltage and current 
(dv = Rdi)
4) Capacitor Cis the linear relationship between voltage and 
electric charge (dq = Cdv)
5) Inductor Lis the linear relationship between magnetic flux Φ 
and current i (dΦ = Ldi)

Out of  the six possible relationships, the sole two electromagnetic 
quantities that there are not any pairings are magnetic flux and 
charge. But, in 1971 Leon Chua [6] postulated that mathematically, 
a fourth fundamental passive circuit element could exist, called a 
memristor, that binds the charge q to the linkage flux Φ as shown 
in Figure. 2 during which the electrical symbol of  a memristor is 
additionally indicated:

dΦ = Mdq ----- (1)

The memristoris defined in terms of  a non-linear functional 
relationship between the flux linkage Φ(t) and the amount of  
electric charge that has flowed through the device q(t):

f(Φ(t),q(t)) = 0 ---- (2)

where Φ(t) and q(t)are time-domain integrals of  memristor 
electric voltage v and electric current i, respectively:

( ) ( )
t

t v dτ τ
−∞

Φ = ∫  ----- (3)

and

( ) ( )
t

q t i dτ τ
−∞

= ∫  ----- (4)

The variable flux linkage Φ(t) is borrowed from the circuit 
characteristic of  an inductor, and it does not represent a magnetic 

field here.In Eq. (2) the derivative of  one respect to the other 
depends on the value of  one or the other. The charge-dependent 
rate of  change of  flux with chargecan be used to describe the 
memristor function as:

( ) dM q
dt
φ

=  ------ (5)

Introducing Eq, (3) in Eq, (5), we have:

( ( )) ( )M

d
dtM q t R qdq
dt

φ

= =  ------ (6)

where RM(q) is the small-signal memristancedefined at the 
operating point. In this way, we have acharge-controlled or 
current-controlled memristor. Similarly, simplifying Eq, (4) in (5), 
we have:

( ( )) ( )M

dq
dtM t Gd
dt

φ φφ= =  ------ (7)

In this way, we will obtain a flux-controlled or voltage-controlled 
memristor. The current-controlled memristor is often modelled 
as a classical resistor whose resistance is controlled by the time-
domain integral of  the present flowing through the memristor. 
Analogously, the voltage-controlled memristor behaves as a 
conductor whose conductance depends on the time domain 
integral of  terminal voltage.

In both cases, need an electronically controlled resistor,conductor 
and an integrator. Table.1 covers all meaningful ratios of  
differentials of  i, q, Φ, and v. Figure. 3 shows the current-voltage 
characteristics for memristor, with its pinched hysteresis loop [2].

With reference to Eq. (6), memristor function can also be written 
in the following way;

Figure 1. Schematic of  two-terminal RS device.

Figure 2. Memristor Relationship.
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v(t)= M(q(t)) i(t) ----- (8)

The power consumption characteristic equation of  a memristor 
is given by,

P(t) = V(t) I(t) = I2(t)M(q(t)) ----- (9)

As long as M(q(t)) varies little, such as under alternating current, 
the memristor will appear as aconstant resistor.When M(q(t)) 
increases rapidly, the current and power consumption will quickly 
stop.

Memristor Read and Write operation

The memristor stores the logical value in terms of  its resistance, 
in contrast to standard memories, which use a charge to represent 
data. This resistance is controlled by applying a voltage across the 
memristor. Memristors are often fabricated between two metals, 
which act as the top and the bottom electrodes of  a switching 
dielectric material. Hence, memristors are often fabricated within 
the metal layers as a part of  a typical CMOS Back End of  Line 
(BEOL) process. Memristive memory generally utilizes a crossbar 
structure, which enables a particularly dense memory array with a 
memory cell area of  4F2, where F is the technology feature size. 
Figure.4 shows one such design of  a memristive memory crossbar 
array. Voltage drivers, row/column decoders, and sense amplifiers 
are used as a component of  the peripheral circuit to support write 
and read operations, similar to other memory technologies.

To perform a write operation, a write voltage Vwrite, above the 
threshold voltage (Von and Voff, which switches the memristor 
to LRS and HRS, respectively), is applied across the target 
memristor through the wordlines and bitlines. For a memristor 
with asymmetric switching characteristics (i.e.,Von = Voff  ), two 
different write voltages are applied for writing logic 1 (i.e., VSET ) 
and 0 (i.e., VRESET ). Read operations are performed by applying 
a voltage Vread , with a magnitude less than the threshold voltage 
for switching, and measuring current passing through the device 
employing a sense amplifier [3].

Resistive Switching Memory Device Applications

Memory applications

RS devices are considered as one of  the simplest applicants for 
future non-volatile memory applications [7, 8]. Unlike charge-
based memories, like dynamic random access memory (DRAM) 
and NAND non-volatile storage, which affect performance 
degradation as the scaling limit is approached, non-charge based 
memories including RS devices offer solutions to increase Moore’s 
law. especially, ionic RS devices offer outstanding performance 
specs including scalability, high switching speed, long retention 
time, high endurance, large on/off  ratio, and low power operation. 
Memory applications uses the resistance states of  RS devices 
represent a touch (‘0’ or ‘1’) or multi bits (e.g. 2bits: ‘00’, ‘01’, ‘10’, 
or ‘11’), which may be read by sensing current through the RS 
device during the read operation.

In-memory computing: Deep learning accelerator

Synaptic functions: In addition to memory applications, RS 
devices are considered promising candidates for bio-inspired 
computing and in-memory computing. When applied in 
computing systems, the RS devices are often utilized in a crossbar 
form to perform Vector matrix operation (VMM). During this 
approach, the values within the matrix are stored as the analog 
conductance values of  the RS devices within the crossbar array. 
The input vector is applied as voltage pulses with different pulse 
amplitudes or different pulse widths to the rows of  the crossbar. 
The currents or charges collected at the columns of  the crossbar 
represent the resulting VMM outputs. As a result, the compute-
intensive VMM operations are often obtained during a single 
step, greatly improving the energy efficiency and throughput 
beyond the restrictions of  standard computing.In the nervous 
system, a neuron can communicate with other neurons by 
passing electrical or chemical signals through synapses [9]. Each 
neuron is often connected with thousands of  other neurons 
with different connection strength, i.e. synaptic weight, which 
determines how efficient the input spikes from one neuron (the 

Table 1. Ratios of  differentials of  i, q, Φ, and v.

Device Units Differential Equation
Resistor Ohm R=dv/di

Capacitor Farad C= dq/dv
Inductor Henry L= dΦ/di

Memristor Ohm M= dΦ/dq

Figure 3. Current - Voltage characteristics of  Memristor.
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pre-synaptic neuron) are often delivered to the receiving neuron 
(the postsynaptic neuron). Additionally, the synaptic weight are 
generally updated by spikes from the pre- and post-neurons, 
allowing the system to achieve learning and form memory. 
These structures and functions are implemented with RS device 
networks, thus making it possible to realize highly-efficient bio-
inspired computing hardware.

VMM with crossbar array: In deep learning algorithms, the 
VMM operation (Multiply-Accumulate (MAC) operation) is 
the main computing operation for training and inference but 
is extremely resource expensive for conventional computing 
systems to implement. To accelerate VMM efficiently, the graphics 
processing unit has been extensively used to improve parallelism 
by using 1,000 s of  computing cores with a high-throughput 
connection to the memory. Algorithm studies to more efficiently 
map the neural networks (NNs) onto the hardware have also 
been conducted [10]. New hardware “accelerators”, like the 
tensor processing unit (TPU), was also designed to enhance the 
efficiency of  matrix operations and have benefited the success 
through optimizations of  the digital circuit and architecture 
design for these relatively narrow types of  operations [11]. Unlike 
conventional hardware systems, RS crossbar array structures can 
naturally perform VMM during a single read step [12]. The Neural 
Network structure is readily mapped to the crossbar arrays, where 
the RS devices located at each cross point can store the weight 
matrix values also as producing an output depending on the input 
and therefore the weight. The inputs and outputs of  the network 
(or a layer within the network) are connected to rows and columns 
of  the crossbar array, respectively as shown in Figure 6. During 
inference, read voltage pulses are fed to the rows of  the crossbar 
particular to the input signals, the VMM outputs are collected as 
the current through the crossbar array at the columns as shown 
in Figure 6. The VMM operation is completed concurrently with 

none of  the data movement between processing and memory 
unitsirrespective of  the matrix size, thus offering very high 
parallelism that results in superior computing throughput and 
very high energy efficiency [13, 14].

Logic design applications

RS devices have also been used for logic operations in electronic 
circuits, which offers a high compute density and non-volatility. A 
fundamental Boolean logic operation, material implication (IMP), 
isimplemented as a logic gate two RS devices. Logic values can 
be represented by the resistance of  the RS devices (i.e., “0” for 
the High resistance State-HRS and “1” for the Low resistance 
state-LRSand the IMP operation can be achieved based on the 
voltage divider effect. With well-designed voltage pulses and 
series resistance values, the resistance of  the output RS device (q) 
is determined by the input logic state (p), producing the desired 
truth table for the IMP operation. With iterative IMP operations, 
all other Boolean logic operations can then be achieved [15, 16]. 
Beyond logic applications, RS devices are often used as non-
volatile switches in field-programmable gate arrays (FPGA) 
systems [17-19]. Switches using RS devices are reprogrammed to 
reconfigure the connections and therefore the functionality of  
the FPGA, resulting in improved density and power metrics. RS 
devices can act as logic elements that summarise the data paths 
connecting logic gates into digital circuits, enabling FPGA-like 
functionality.

Conclusions

In this paper, we have highlighted the history, operation of  
RS devices as a memory for reading and write operation and 
its potential applications. RS devices have made remarkable 
progress over the last 15 years. RS devices have offered 

Figure 4. Crossbar structure of  Memristive memory array.

Figure 5. Schematic of  the concept of  RS devices as synapses between neurons.
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commercial productsfor memory applications and have also 
been extensively used for neuromorphic computing applications, 
providing significant benefits for real-time data processing with 
highthroughput and low energy consumption.
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