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Introduction

Dental implants have revolutionized the prosthetic rehabilitation 
of  the tooth, overcoming the limitations of  the fixed and remov-
able prosthesis [1]. Osseointegration is the principle behind the 
longevity and clinical performance of  the dental implant. The 
concept of  osseointegration was first put forth by Branemark [2]. 
The implant substrate gets integrated and has new bone forma-
tion surrounding its surface. Over the course of  months, about 
60–70% of  the implant surface is covered by bone. The amount 
of  bone-implant surface contact has been designated as %BIC. 
This defines the amount of  osseointegration percentage and 
relies on macro and micro topography of  the implant material, 
type of  alloy, design, size, surface texture and surgical implanta-

tion technique, quality/quantity of  the alveolar bone and occlusal 
loading[3, 4]. Inspite of  overly high success rates seen in implant 
dentistry, commonly used material for implants are titanium (Ti), 
due to their biocompatibility. However, they do have an effect on 
their on the implant surface and are not resistant to bacterial at-
tacks which may over a duration of  time leads to primary and sec-
ondary implant failure such as poor osseointegration, mechanical 
problems, immobilization, poor oral hygiene, systemic complica-
tions, and infection [5]. In order to overcome the limitations, vari-
ous efforts have been undertaken, including coating the implant 
surface to enhance their clinical performance is long been thought 
to enhance osseointegration by mediating the direct interaction to 
host osteoblasts in bone formation.

Abstract

Dental implants are commonly resorted treatment options for prosthetic rehabilitation of  the missing tooth albeit being suc-
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Materials used in dentistry are at a constant phase of  evolution, 
overcoming their existing limitations. Naturally derived biomateri-
als have excellent properties such as biodegradability, biocompat-
ibility and non-toxic profile, which makes them an ideal substanc-
es. Such materials should resemble extra cellular matrix in order 
to emulate their osteogenic and physiological function. Some of  
the bioactive materials that have been investigated include starch, 
collagen, gelatin, alginate, cellulose, elastin and chitosan [6, 7]. In-
corporating chitosan represents an ideal choice to enhance their 
performance. The osteoconductive and osteoinductive property, 
anti-inflammatory, anti-bacterial and wound repairing mechanism 
have rendered them to be an ideal coating to enhance bone for-
mation and to prolong the longevity of  orthopedic and dental 
implant devices [8]. In this review, we discuss the latest application 
of  chitosan coating on dental implants.

Chitosan

Chitosan was first reported by Rougat in 1859 is a cationic poly-
saccharide is made up of  β-(1-4)-linked d-glucosamine and N-
acetyl-d-glucosamine in repeated units [9]. It was first detected in 
the exoskeleton of  sea creatures such as shrimp, crabs. Chitosan is 
the most widely present polysaccharide after cellulose. Apart from 
marine sources, chitosan can also be extracted from fungi namely, 
Aspergillus spp., Rhizopus. Gongronella spp., Absidia spp., as they are 
known to harbor chitosan as their primary cell wall component 
[10].

Chitin is the raw form of  chitosan, is treated to demineralization, 
deproteinization and decolourization using chemical reagents. 
Chitin is deacetylated to chitosan. The raw material is a translu-
cent, resilient, highly organized crystalline structure with poor re-
activity and low solubility in the aqueous medium. To make them 
suitable for various applications, the reactive hydroxyl group is 
chemically modified through carboxymethylation, etherification, 
Quaternization and precipitation or flocculation. These modi-
fications impart more stability, solubility, lower toxicity and less 
inflammatory properties [12]. The method of  extraction of  chi-
tosan determines the degree of  deactelyation, and is given by the 
ratio of  GlcNAc to GlcN structural units is an important crite-
rion influencing the physical property such as solubility, viscosity 
and absorption. The degree of  deacetylation confers the molecu-
lar weight of  the chitosan biomaterials. They could range from 

low molecular weight (50–190 kDa), medium molecular weight 
(190–300 kDa) and high molecular weight (310–375 kDa).

Chitosan has been employed as a carrier for drugs, proteins, vac-
cines through nanoparticles in the biomedical field due to their 
excellent biocompatibility, non-toxicity, hemostatic, mucoadhe-
sive, antitumor, antioxidant, and antimicrobial properties. The 
common usage of  chitosan in the field of  dentistry is given in 
Table 1.

The coated material on the implant surface should have the po-
tential to withstand heavy masticatory forces. As, the when ex-
ceeding the threshold limit, the stress results in delamination and 
disintegration of  the coating along the implant-bone surfaces 
[46]. Chitosan does not adhere to the implant surface due to its 
lack of  surface reactivity, so they are applied to the implant surfac-
es in combination with different polymer compounds to amplify 
the surface conductivity. The optimization of  bioactive chitosan 
coatings requires the intricate knowledge of  the mechanisms in-
fluencing bioactivity, surface properties, and bonding strength to 
titanium implants.

Coating of  Chitosan

Silanization

Silanes are chemical compounds that oxidize the implant surface 
leaving it rich in hydroxyl groups, this enables the chitosan to 
chemically bond with implant surfaces to increase coating– sub-
strate fracture resistance. Commonly employed silane chemicals 
include 3-Aminopropyltriethoxysilane (APTES), isocyantopro-
pyltriethoxysilane (ICPTES) and triethoxysylilbutyraldehyde 
(TESBA) [47]. The compound reacts with glutaraldheyde groups 
of  the chitosan molecule forming a covalent bond strength of  
1.5–1.8 MPa [48]. Ethanol and water due to relatively harmless 
profile have been examined in deposition of  APTES/Chitosan 
on implant surfaces. It was found that bond strength had signifi-
cantly increased from mean 0.5 MPa for chitosan simply absorbed 
to the titanium to 1.5 MPa [49].

Greene et al. used the APTES–glutaraldehyde to coat chitosan 
onto a 316L stainless steel screw via a dip-coating process. They 
screwed chitosan-coated screws into solid rigid polyurethane 

FIGURE 1 . Schematic representation of  chitin and chitosan [11].
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foam simulating the density of  bone and showed that approxi-
mately 90% of  the chitosan coating was retained even in hydrated 
conditions, based on change in mass [50].

Ethylene oxide gas sterilization, DDA of  the chitosan, 2% gen-
tamicin in the chitosan solution on titanium or stainless steel sur-
faces have been explored to increase the bond strength47. Due to 
the crystalline structure of  the chitosan, Nano-indentation meth-
ods have been used by Wang SF et al and Majd S et al to investi-
gate the bond strength of  chitosan films, however it did not have 
a significant effect [51, 52]. Martin et al investigated toluene added 
to APTES onto titanium samples, to increase the bond strength 
of  the chitosan coating to titanium, they observed that the bond 
strength more than tenfold as compared to the ethanol/water-de-
posited APTES. This increase in bond strength was attributed to 
increased silane deposition with toluene solvent as compared to 
ethanol/water solvent, as measured by X-ray photoelectron spec-
troscopy [53]. Renoud P et al demonstrated that chitosan coated 
surfaces were scratch resistant with strong adhesive properties. 
When tested for bacterial resistance, they showed strong inhibi-
tion of  Actinomyces naeslundii growth and good biocompatibility to 
fibroblasts [54].

Electrodeposition

In this method, an electrical current is utilized to deposit charged 
material from a conductive solution onto a target surface (the im-
plant surface). Electrodeposition of  chitosan particle is relatively 
inexpensive and allows control of  the thickness of  the coating on 
the implant surface [55]. Coatings produced from electrodeposi-
tion are dependent on electrolytic medium, the electrical nature 
of  electrodes, particle charge, particle size, and viscosity of  the 
suspension along with the applied electric field [56]. The pH of  
the suspension affects the particle charge distribution and ionic 
conductivity of  the suspension, which in turn affects the electro-
phoretic mobility of  the particles.

Sputter coated chitosan-calcium phosphate and uncoated titani-
um pins in a 12-week rabbit model when examined histologically, 
showed new bone formation and accelerated healing of  implant 
wounds which were identical to the results obtained from con-
trols samples which were uncoated [57]. Electrodeposited CaP/
chitosan coatings were found to favour osteoblast differentiation 
and proliferation from MC3T3-E1 cells, which may endow them 
with great potential for future application [58].

Panda S et al in 2019, studied the osseointegrative properties of  
pure Ti-6Al-4V substrates with three different surface roughness 

Table 1. Uses of  Chitosan in Dentistry

Specialty Author name Method of  Chitosan Use

Periodontics Rahmani F et al. [13] Chitosan dentifrice

Bae K et al. [14] Chitosan Mouthwash

Qasim B et al. [15] Periodontitis

Costa EM et al. [16] Inhibition of  biofilm formation

Akncbay H et al. [17] delivery of  metronidazole

Yeo J et al. [18], Park JS et al. [19] and Ji QX et 
al. [20]

Bioresorbable membrane in GTR

Oral Surgery Kale et al. [21], Gupta A et al. [22] Extraction wound healing

Pippi et al. [23] Surgical bleeding hemostasis

Singh et al. [24] Bone healing

Değim Z[25] Increasing tensile strength of  wound

Wu Y[26] TMJ Arthritis

Bousnaki M27[27] TMJ Disc Regeneration

Conservative Dentistry & 
Endodontics

Tarsi R et al. [28], Fujiwara M et al. [29] Anti-Cariogenic Agent

Samprasit W et al. [30] , Uysal T [31]

Arnaud et al. [32] Tooth Remineralization

Dragland IS et al (Dragland et al. 2019) Incorporated in zinc oxide eugenol

Schlueter N et al. [33] Toothpaste for Abrasive enamel wear

Camacho-Alonso F et al. [34] Removal of  smear layers

Kishen A [35] Root canal irrigant

Surboyo MD et al. [36] Pulpal Regeneration

Senthil Kumar R et al. [37], Soygun K et al. [38],  
Mishra A et al. [39]

Incorporation with Glass ionomer cements

Orthodontics Uysal T. [31] Enamel demineralization surrounding brackets,

Prosthodontics Chander NG et al. [40] Incorporation in heat cured denture base resin

Namangkalakul W et al. [41], Stenhagen ISR et 
al. [42]

Antifungal denture adhesive

Oral Pathology/Medicine Adhikari HS et al. [43] Targeted delivery of  the chemotherauptic  compound

Mazzarino L et al. [44] Initation of   apoptosis and cell cycle arrest

Potdar PD et al. [45] Inhibition of  tumor progression and metastasis
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(1.1, 1.9 and 3.1 μm) coated with chitosan and bovine serum albu-
min successfully by using sol-gel dip coating and electrophoretic 
deposition (EPD) methods. The coating produced a better coat-
ing stability over the Ti substrate than sol-gel dip coating and Chi-
BSA conjugate coating demonstrated higher stability and surface 
texture than only Chitosan coating [59].

Degree of  deacetylation was modified and a 91.2% de-acetylated 
chitosan did not affect the bond strength (1.5-1.8 MPa) when they 
were sterilized using gas. There was a mild dissolution in the coat-
ings surfaces that were sterilized with gas and the growth of  the 
osteoblast cells was greater on the chitosan-coated samples than 
on the uncoated titanium. These results indicated that chitosan 
promotes osteoblast proliferation more than the controls [48].

The latest innovative technique that used for chitosan deposition 
is the physical vapor deposition method, where a dilute frozen 
solution of  the coating material is vaporized using a pulsed laser. 
The vapor from the solvent material absorbs the energy of  the 
laser, and is volatilized along with the coating material. The larger 
vapour molecules are deposited rapidly on the substrate surface. 
The process provides excellent control over several film coating 
parameters, including thickness, roughness, and homogeneity. 
Patz et al. used this technique, matrix assisted pulsed laser evapo-
ration (MAPLE) to coat chitosan onto a titanium wire mesh. The 
MAPLE chitosan coating showed high coating uniformity on the 
mesh (demonstrating the ability to coat complex shapes and in-
ternal surfaces) and compatibility with cultured bone cells [60].

Layer-by-layer self-assembly techniques have also been used to 
make chitosan coatings. This technique forms multilayers on the 
titanium surfaces. A layer of  positively charged material (chi-
tosan) is first induced followed by alternate deposition of  nega-
tively charged Gel and positively charged material utilizing elec-
trostatic interactions [61]. The technique is a relatively low cost, 
simple technique that can be performed with minimal equipment 
at room temperature. The method takes advantage of  the static 
or hydrogen-bond interactions between different kinds of  mac-
romolecules. The process results in very thin membranes and 
coatings that retain the original and desirable properties of  the 
component polymers such as heparin, hyaluronic acid, oxy-chitin, 
gelatin, and bioglass particles [62].

Thickness and Concentration of  Chitosan Coat-
ing

The thickness of  the biomaterial coating also plays a significant 
role in osseointegration. A adequate thickness of  the coating is 
around 30-40 µm, which degraded only after 52 weeks and it ex-
hibited better early bone apposition without any inflammation 
signs [71]. The smooth surfaces of  chitosan microspheres does 
not show any features for cell attachment. Therefore it was com-
bined with β-TCP to form a β-TCP/chitosan composite micro-
spheres. It was then seeded with murine MC3T3-E1 osteoblasts 
for evaluating the attachment interaction between cells and ma-
terials. It was observed that the adherence and proliferation of  
osteoblastic cells were significantly better than on chitosan micro-
sphere alone [72].

Chitosan combined with strontium ranelate was evaluated for 
their bone regenerating capacity on titanium surface in different 

concentrations of  strontium ranelate (SR) (0, 2, 20, 40, and 80 
mmol/L of  the strontium ion [Sr2+]). SR-loaded chitosan film 
on a titanium surface promoted significant osteoblast prolifera-
tion and differentiation in a dose-dependent manner, this could 
potentially a new treatment for cases where the quality/quantity 
of  the alveolar bone is in question [73].

A complex of  a chitosan/collagen coating was hypothesized to 
promote gingival epithelial cell adhesion to titanium implants 
conditioned with plasmid pLAMA3-CM. Ne epithelial attach-
ment was seen at the end of  the study which were confirmed 
through immunofluorescence studies. The authors concluded 
that modification of  titanium implants by plasmid-mediated pLA-
MA3-CM diffusion is an optimistic method to create a biological 
seal around the transmucosal sites of  implants. A novel implant 
substrate was developed containing graphene–chitosan has been 
demonstrated to show increased surface wettability and rough-
ness, thereby upregulating osteoblast proliferation [74].

Chitosan Degradation 

The degradation rate describes the reduction of  chitosan layers/
films caused by enzymes, lysozymes and free radicals. The amount 
of  lysozyme can be used to determination of  chitosan degrada-
tion rates. To gain long term mechanical stability, coating material 
should exhibit optimal degradation behavior and match the speed 
of  the new tissue formation [75] Ma K et al observed that chi-
tosan-gelatin coating degraded completely after 28 weeks through 
which it was found to be more stable [76]. However, since Chi-
tosan is sensitive to mild changes in the pH of  the solution, al-
kaline buffer solutions such as phosphate-buffered saline (PBS) 
tends to degrade chitosan faster than usual [77]. The in vivo study 
of  Wang J et al. also demonstrated the stability of  chitosan from 
degradation after 26 weeks and 12 weeks [71].

Bioactivity Of  Chitosan Coating 

Cellular behavior is influenced by the surface characteristics and 
DD, with distinct effects depending on the cell type. Osteoblastic 
cell attachment and proliferation are favored on high DD chi-
tosan membranes, which aid in the differentiation process and 
stimulate the secretion of  extracellular matrix proteins. Chitosan 
coated implant surface are positively charged which attracts the 
negatively charges red blood corpuscles, cytokines, hormones and 
a plethora of  growth factors to the site of  implantation and or-
chestrates tissue repair and remodeling [63]. Absorption of  chi-
tosan coating onto the surface of  the implant paved the way for 
the coating to be used for drug delivery, incorporation of  growth 
factors [64]. Chitosan films and coatings sustain osteoblastic cell 
growth and act as a vehicle for growth factors, bone morphoge-
netic protein (BMP), release of  BMP with as much as 80–85% of  
the BMP being retained in the films after 7 days [65].

Greene et al. employed a double trypsinization method to collect 
normal human fibroblasts and cells from a human osteoblastic 
precursor cell line from chitosan coatings bonded to stainless steel 
as compared to uncoated stainless steel coupons. Their results 
showed that both the fibroblasts and osteoprecursor cells grew 
equally well on the chitosan coatings as on the uncoated controls 
[50].



Revathi Duraisamy, Dhanraj Ganapathy, Rajeshkumar Shanmugam. Applications of  Chitosan in Dental Implantology - A Literature Review. Int J Dentistry Oral Sci. 2021;8(9):4140-4146.

4144

 OPEN ACCESS                                                                                                                                                                               https://scidoc.org/IJDOS.php

The osteogenic potential of  chitosan coating was studied by Zu-
jur D et al in 2015, who chemically modified the chitosan through 
lactobionic and 4-azidebenzoic acid to convert it to a hydrogel 
and photocrosslinkable. It was then treated to the pure Ti alloys 
sandblasted with alumina particles. The coating had sustained able 
to support cell proliferation of  osteoblasts and could be used for 
further studies in the encapsulation of  bioactive molecules to im-
prove osteogenic potential at the tissue-implant interface [66].

Norowski et al in 2011 incorporated tetracycline at 20 wt% or 
the antimicrobial chlorhexidine at 0.02 wt% of  coatings made 
with an 81% DDA chitosan bonded to titanium. They found that 
chitosan coatings released 89% of  the tetracycline in 7 days and 
100% chlorhexidine in 2 days in vitro. Released tetracycline inhib-
ited the growth (95–99.9%) of Actinobacillus actinomycetemcomitans 
and Staphylococcus epidermidis for up to 7 days with no cytotoxicity 
to human fiboroblastic or osteoblastic cells [67].

Leedy et al in 2009 loaded vascular endothelial growth factor in 
chitosan coatings bonded to titanium via to assess the osseointe-
gration via local stimulation of  angiogenesis, in patients on bis-
phosphonate therapies for osteoporosis or myeloid cancer. The 
growth factor had rapidly released over 3 days from coatings with 
an initial peak of  ~44 ng/mL/cm2 at day 1 and 0.15 ng/mL/cm2 
at day 3. The growth-factor-loaded coatings enhanced the viability 
of  endothelial cells and significantly stimulated the proliferation 
of  osteoblastic cells in vitro [68].

Wang et al. used a chitosan-plasmid DNA coated titanium screws 
to which type-IV collagen was applied in order to mimic extra 
cellular matrix environment. The authors observed significant 
new tissue attachment surrounding the dental implants [69]. Elec-
trodeposited calcium hydroxide particles and chitosan coatings in 
Ti6Al4V plates to stimulate osteoblast function and osteogenesis. 
They found an increase in alkaline phosphatase activity, collagen 
expression and both bone sialoprotein and osteocalcin genes were 
up-regulated on cells that were cultured on the electrodeposited 
CaP/chitosan coatings [58].

Chen et al assessed the antioxidant and osteogenic capacity of  
a multilayer surface on Ti substrates (Chitosan was combined 
with catechol and compared against coatings of  gelatin, and 
hydroxyapatite on their capacity to form multilayer bioactive 
coatings, it was found that chitosan coating along with catechol 
displayed multilayered coating on the implant surface which in 
turns promoted Ti implants were able to promote osteogenesis 
through upregulation of  osteoblast-related gene expression.[70] 
Klokkevold et al. reported that chitosan films facilitated the dif-
ferentiation of  osteoprogenitor cells, and inhibited fibroblast pro-
liferation [78]. More recently, Lahiji et al. demonstrated that os-
teoblasts maintained phenotypic morphology and expression of  
extracellular matrix proteins for seven days when cultured on 90% 
de-acetylated chitosan films as compared to plastic coverslips [79].

A conglomeration of  chitosan- hydroxyapatite hydrogels were 
produced by a thermal cross-linking reaction using glycerol phos-
phate disodium salt coated on 316L SS implants were found to 
increase osseointegration biocompatibility and protection against 
corrosion. Recently, CS has been utilized in 3D printing for vari-
ous tissue engineering applications [80].

Immediate loading implants after tooth extraction is an attrac-

tive alternative that presents several advantages such as reduction 
of  post-extraction resorption, optimal positioning of  the implant 
and reduction of  the time required for prosthetic rehabilitation. 
On, which requires a prerequisite of  adequate bone volume. 
Several regenerative treatment modalities, such as guided tissue 
regeneration (GTR) and autogenous bone grafting (autografts), 
have already been introduced into clinics, and been unequivocally 
accepted as the standard of  care.

An in-vitro study by Alnufaiy BM et al in 2020 investigating the os-
teogenic potential of  chitosan coated implant surface by altering 
the degree of  deacetylation to 80 or 95 DDA% in hMSC-TERT 
20 cells It was observed that all cells exhibited significant atta-
chement although it was higher in 95% along with a significant 
increase in the expression of  osteogenic markers compared to 
the 80% chitosan and control groups. The biomineralization and 
enhanced osseointegrative function of  high DDA of  was justified 
and is thought to enhance future dental implant healing processes 
and osseointegration [81]. Zhang Y et al in 2017 constructed chi-
tosan/ collagen composites combined with virus encoding BMP7 
gene by freeze-drying methods demonstrated the osteogenesis in-
duced by chitosan/collagen combined with BMP7 [82].

Murine mandibles were implanted with chitosan/GNP/GFBP-
3 coating for 4 weeks. Histopathology revealed enhanced bone 
remodeling and increase in bone density around the implant. The 
authors suggested that the coating had down-regulating osteoclas-
togenesis and up-regulating osteogenesis [83]. The same author 
also examined the role of  chitosan/ Peroxisome proliferator acti-
vated receptor gamma around implants and observed a significant 
reduction of  pro-inflammatory mediators and upregulation of  
osteoblastic gene expression which reinforced the bone–implant 
integration [84]. Lactose-modified chitosan coating for implants 
in minipig femur model by Marsich et al reported evidence of  
anti-inflammatory and antioxidant effects of  chitosan and lactose 
scaffold on chondrocytes [85].

Although favorable results were obtained from animal models, 
in-vitro conditions. These results cannot be extrapolated to the en-
vironment of  human oral cavity, where dynamic factors might 
influence the chitosan coating pertaining to implantology since 
cortical remodeling is absent and they stop growing later than 
other mammals. Future research should be aimed to assess if  such 
coatings would sustain and facilitate osseointegration within the 
harsh environment of  human beings.

Conclusion

Chitosan has attracted considerable attention in dentistry due to 
its strong favours. This novel bioactive coating of  chitosan can 
produce robust titanium surfaces with greater osseointegration 
capacity than uncoated titanium alloys. The quality and quantity 
of  bone formation surrounding the implant surfaces can be in-
creased by using chitosan along with other polymer compounds 
of  mineralization substantially increased with an increased num-
ber of  bi-layers.
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