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Introduction

Hydroxyapatite is a material that has multiple uses because of  
its biocompatibility and osseointegration with a resemblance to 
the nonorganic bone structure. Hydroxyapatite is the basic pri-
mary material that is used in dentistry and orthopedics. This hy-
droxyapatite is used in many dental specialties such as Implantolo-
gy, Oral and Maxillofacial Surgery, Periodontology, and Esthetics. 
Recently, this hydroxyapatite is most commonly used as an Im-
plant material because of  its excellent osteoconductive property 
which gives the best support for the osseointegration and osteo-
genesis process. This is used to increase the thickness of  atrophic 
alveolar Ridges, used in cystectomy to fill the bone defects [1].

In teeth, the enamel is the most mineralized tissue of  the human 
body. In, the same way Hydroxyapatite is the main component of  

enamel, which has a bright white appearance and eliminates the 
reflection of  light by closing the minute pores in the enamel sur-
face. Hydroxyapatite is an important source of  calcium and phos-
phate, and remineralization occurs in the demineralized enamel 
areas [2]. HA in a granular form is currently used in clinical dental 
practice for the reconstruction of  periodontal bone defects [3].

Hydroxyapatite can be used in bone tissue engineering, dental 
implant coating, orthopedic applications, restoration of  the peri-
odontal defect, remineralizing agent in toothpaste, drug delivery, 
and gene delivery, and desensitizing agent in post teeth bleaching. 
[4].

Issues of  Concern

Hydroxyapatite has been long term used in hard tissue engineer-
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ing because of  its high chemical similarity to the mineral hard 
tissue. In the 1950's the bioceramics were used to fill the bone 
defects, but now recently the hydroxyapatite crystals are used to 
fill the bone defects. The interlocked porous structure has been 
provided in the hydroxyapatite based Implants. This interlocked 
porous structure acts as the extracellular matrix which promotes 
the natural process in cellular development and for tissue regen-
eration [5, 6].

Moreover, the HA increases the osseointegration and biocompat-
ibility process by promoting through the rigid anchorage in be-
tween the implants and surrounding tissues in the bone without 
forming the growth of  fibrous tissue. The bone anchorage should 
retain for a longer period in the successful osseointegration which 
will hence provide a complete functional ability [7, 8].

Furthermore significant applications of  HA have been seen in 
dentistry since 1979. The HA cylinders have been used for the 
replacement of  teeth. In the Era of  1980’s this restorative dental 
procedure was used to enhance the bone fixation which was fol-
lowed by utilizing the HA blocks. But recently, the HA is not only 
found in the dental cement and fillings but also in the tooth paste. 
The HA in toothpaste is used to decrease the deposition of  layers 
on teeth and it acts as a polisher [9, 10].

The HA application can also be found in drug delivery. In physi-
ological conditions the nano- HA contributes to a longer degra-
dation rate. For the surgical placement or injection this local drug 
delivery can be useful as a carrier. Hence, the controlled drug de-
livery using HA will maintain the drug concentration in blood and 
it will reduce the toxicity to the other organs [11, 12].

The HA has several methods to produce either from synthetic 
material or through natural sources. Synthetic Hydroxyapatite 
uses raw materials in the form of  calcium carbonate, calcium hy-
droxide, calcium nitrate, ammonium hydroxide, and diammonium 
hydrogen phosphate. The HA fabrication process is called as wet 
method and solid-state reaction , which is followed by calcination 
or sintering process. Both the wet method and solid state method 
are used by chemical reaction by varying the content of  calcium 
oxide and tricalcium phosphate to reach the hydroxyapatite in the 
stoichiometric conditions [13].

The wet method process produces a non-stoichiometric Hy-
droxyapatite powder, with more impurities such as ions of  hy-
drogen phosphate, carbonate, sodium and chloride. These HA 
impurities cause the formation of  calcium deficient. On the other 
hand, this solid state reaction produces a stoichiometric and well 
defined crystals shape of  HA product. But even though this solid 
state reaction requires high temperature and long heat treatment 
procedures. If  the crystalline size increases then it will cause a 
decrease in porosity, which is associated with the aging process 
[14, 15].

Clinical Significance

For the hard tissue repair over the Autograft and Allograft the 
synthetic and natural hydroxyapatite have long been preferred. 
Usually these grafts will have problems with several natural issues 
such as shortage of  grafts, morbidity of  donor site, graft rejec-
tions and disease transmission [16].

The bioactivity of  HA in bone tissue engineering, has proved to 
support the osseointegration through the osteoconductive and 
osteoinductive process. The property of  Osteoconductive in HA 
provides a way to guide the new bone formation on the surface of  
the pores to the implant body. To the formation of  strong tissue 
- implant interface the hydroxyapatite osteoconductive property 
allows the osteoblasts to attach, grow, proliferate and then phe-
notypes get expressed in a direct contact manner. The specific ge-
ometry and pore size of  HA depends upon the osteoconductive 
property. The osteoconductive property of  HA has the purpose 
for tissue ingrowth in which the neoformation of  bone occurs 
in the non-bone forming areas. By coating the implant using HA 
increases the initial mechanical stability post implantation which 
results in the decrease of  aseptic loosening. HA combines with 
the chemical bonding of  the implant with the surrounding tissue 
which absorbs the protein into the implant surface. To the early 
healing event at the tissue implant surface the presence of  protein 
on the surface will be favorable. The implant gives high stability 
which makes the immediate loading more predictable. The chemi-
cal presence of  HA to the bone minerals will ensure its ability 
to bond directly to the bone tissue with any intervening fibrous 
layer. Application of  HA as the cellular matrix plays a major role 
[17-19].

The advanced material fabrication process which leads to the de-
velopment of  Nano - HA particles and induce the fast dentin 
remineralization. The demineralized collagen matrix of  dentin 
gets diffused in the Nano-HA which act as a mineral precursors 
by the changing the environment into a suitable scaffold for the 
remineralization process. Nano - HA provides a good source of  
calcium phosphate. This calcium phosphate is an important ele-
ment to promote the protection against dental caries and erosion. 
The presence of  Nano-HA in toothpaste acts as a filler particle to 
repair the holes and to surface the enamel at lower levels. During 
this reparation process, to replace the phosphate and calcium ions 
which have dissolved, the Nano- HA gets through the surface 
of  the enamel. Thereby remineralizing the damaged enamel and 
to reconstruct its structural integrity. However, the Nano-HA in 
toothpaste will also provide a protective coating over the dentinal 
tubules. This offers a fast and potential relief  from the tooth hy-
persensitivity [20, 21].

The Hydroxyapatite is quite strong in atomic bonds which con-
tributes to the fact that the HA does not swell or change in size 
under the range of  temperature and PH [18]. The most common 
problem because of  the low swelling ratio of  HA is drug deliv-
ery, the HA forbids the outburst of  drugs. Bone cement in the 
HA has both the fixating materials and drug carriers [15]. The 
controlled drug capacity gets released via the diffusion from the 
cement through the dissolution of  the apatite material. The bone 
cement will have less in vitro solubility than the typical block hy-
droxyapatites [22]. Probably, HA is used in delivering the skeletal 
drug system in the diseased bone. The oral therapeutic system 
has more acid in the gastric environment which can degrade its 
structure [22-24].

HA application has several problems in medicine. The use of  HA 
as an Implant has inherent defects and fine porosity that could act 
as a crack initiator. In the event, the crack propagation can cause 
catastrophic deterioration during the application. More bulk of  
HA application sometimes will cause the mismatch between the 
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implant and bone which will later cause the disproportionate load 
sharing. On the other side, the HA will always contain a trace of  
elements such as Fluoride ions ( F-) and Hydroxyl ions (OH-). 
These fluoride ions and hydroxyl ions will cause an increase in 
crystallite size and a decrease in solubility which can increase the 
appetite strength. Few elements such as phosphide ions (PO3 3-) 
and chloride ions (CL-) have been known to decrease the Hy-
droxyapatite mechanical properties which cause the reduction in 
crystalline size and an increase in solubility [25].

Another problem that occurred by using HA in the application is 
to fine-tune the degradation rate. An HA-based implant will have 
poor mechanical properties which can induce not only fast deg-
radation but also implant failure and chronic inflammatory reac-
tion. For bone regeneration, the high calcium which is produced 
naturally is more important. Nevertheless, when the degradation 
occurs too fast the structural collapse of  the implant may occur 
and induce too much graft resorption. For tissue regeneration, 
HA degradation is more important for the implant. Regarding this 
HA condition, the controlled release of  HA particles can be car-
ried out by manipulating the particle size. The particles which are 
small have a wider surface than large sizes with the same weight. 
The particle which has a smaller size will be easy to detach from 
the implant body [26-29].

Conclusion

HA is the most commonly used material in dentistry. This Hy-
droxyapatite coating on metal implants intensifies osseointegra-
tion in the early stage of  bone healing. The HA on metal implants 
provides a strong bone-bonding capacity. While the titanium im-
plant will also have the same level of  bone contact in the later 
stage of  healing. There is no significant coating over the influence 
of  bone formation and bone-bonding strength through the crys-
tallinity of  HA. Among all, the HA coating has higher crystallin-
ity which is more desirable in providing good strength, durability, 
and osteoconductive properties. In the future, it is reasonable to 
assume that hydroxyapatite and vitamin K2, vitamin D, chitosan-
coated titanium dental implants may have better biocompatibil-
ity and osseointegration properties and hence, it is of  interest to 
prepare titanium dental implants coated with nanohydroxyapatite 
and Vitamin K2 and to study their biocompatibility and osseoin-
tegration.
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