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Introduction

Globally, there were 284.6 million of  patients with diabetes in 
2010 and it was predicted to be 438.4 million in 2025, including 
90-95% type 2 diabetes (T2D) [1]. In the Unites States (US), the 
estimated prevalence of  T2D is 8.3 % in adults (about 25.8 mil-
lion) [2]. Individuals with T2D have higher risk for cardiovascular 
disease and complications [3]; while T2D is also associated with 
and/or has comorbidity with multiple cancers such as endome-
trial and prostate cancers [4-8]. T2D is a complex trait caused by 
a complex interplay between genetic and the environment factors. 
Previous twin study provided evidence that genetic factors con-
tribute to the development of  T2D [9] while the heritability of  

T2D is about 31–69% [10].

Cox model and Weibull proportional hazard regression model 
have been used to analyze incident diabetes [11-17]. To date, few 
studies have focused on survival analyses of  genetic variants with 
age at onset (AAO) of  T2D. One previous study examined the as-
sociations of  genetic variants within alpha2B adrenoceptor gene 
with AAO of  T2D using a multiple linear regression [18]. In an-
other study, the Cox model was used to check the associations 
of  transcription factor 7-like 2 (TCF7L2) gene and its upstream 
region with AAO of  T2D in Mexican Americans [19]. In addi-
tion, the Mann-Whitney and the Kruskall-Wallis tests were used 
to test the associations of  HNF1A gene with AAO of  T2D in 
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patients with maturity-onset diabetes of  the young (MODY)-3 
[20]. However, to the best of  our knowledge, no study has used 
parametric survival models (including exponential, Weibull, log-
normal, log-logistic, and gamma models) in genetic association 
analysis of  AAO of  T2D or compared Cox regression and para-
metric survival models.

The exostosin glycosyltransferase 2 (EXT2) gene (also known as 
SOTV; SSMS) is located at 11p11.2 [21-25]. A genome-wide asso-
ciation study (GWAS) in a French case-control cohort identified 
several novel loci for the risk of  T2D including 3 single nucleotide 
polymorphisms (SNPs) (rs3740878, rs1113132 and rs11037909) 
within the EXT2 gene [26]. However, the associations were not 
replicated in the following cohorts including: Japanese [27], an Af-
rican American case-control sample [28], the Diabetes Prevention 
Program (DPP) data [29], Northern European populations [30], 
Chinese [31-32], Mexican [33], or Lebanese Arabs [34]. Recently, 
a meta-analysis revealed that these three SNPs in the EXT2 were 
significantly associated with the risk of  T2D [35]. Furthermore, 
another meta-analysis of  20 studies in Han Chinese confirmed 
the association of  EXT2 gene with T2D [36]. However, no study 
has examined the effect of  EXT2 gene on AAO of  T2D. 

The aim of  this study is twofold: (1) to examine the associations 
of  EXT2 gene polymorphisms with AAO in a Caucasian sample 
and (2) to find the best model by comparing the semi-parametric 
Cox regression and parametric survival models in survival analysis 
of  AAO of  T2D.

Materials and Methods

Study subjects

The Marshfield sample is from the publicly available data from 
A Genome-Wide Association Study on Cataract and HDL in the 
Personalized Medicine Research Project Cohort-Study Accession: 
phs000170.v1.p1 (dbGaP). The primary goals of  this project are 
to develop and validate electronic phenotyping algorithms, to ac-
curately identify cases and controls while maintaining a positive 
predictive value (PPV) of  > 95%, and to conduct a genome-wide 
association study that advances the understanding of  two spe-
cific yet interrelated disease states, while simultaneously engaging 
the community in these research efforts. The details about these 
subjects were described elsewhere [37-38]. Social and behavioral 
factors used in this study were age, gender, alcohol use in the past 
month (yes or no), BMI, and smoking status (never smoking, cur-
rent smoking or past smoking). Genotyping data using the ILLU-
MINA Human660W-Quad_v1_A are available. The genotypes of  
22 SNPs within the EXT2 gene were available in this data. 

Statistical methods 

Descriptive statistics and genotype quality control

Descriptive statistics were used to characterize participants’ sex, 
BMI, alcohol use, smoking, age and AAO of  T2D stratified by 
T2D case and control status. Hardy-Weinberg equilibrium (HWE) 
was tested for all 22 SNPs using the controls; then, minor allele 
frequency (MAF) was determined for each SNP by using PLINK 
v1.07 [39]. To deal with population stratification, the principal-
component analysis approach [40] in HelixTree software was used 
to identify and exclude outlier individuals [41]. Consequently, 
3564 Caucasian individuals were included (878 individuals with 

T2D and 2686 non-T2D individuals).

Multiple logistic and linear regression models in PLINK 
software

Multiple logistic regression analysis (1) of  each SNP with the risk 
of  T2D as a binary outcome, adjusted for sex, age, alcohol use, 
smoking status and BMI, was performed using PLINK; while the 
asymptotic p-values were observed and the odds ratio (OR) and 
95% confident interval (CI) were estimated.

logit(p(Y1=1)) = β0 + β1SNPk + β2Sex + β3Age + β4Alcohol + 
β5Smoking + β6BMI              (1)      

where Y1 is T2D (Y1=1 if  T2D) and SNPk is the genotype at the 
kth SNP. 

The similar procedure was performed for the multiple linear re-
gression analysis (2) of  each SNP with the AAO of  T2D as a 
continuous outcome. 

Y = β0 + β1SNPk + β2Sex + β3Alcohol + β4Smoking 
+ β5BMI    (2) 

where Y is AAO of  T2D and SNPk is the genotype at the kth SNP.

Multiple testing

Bonferroni correction (α=0.05/22=2.27x10-3) was used for sta-
tistical significance [42]. In addition to obtain nominal Type I er-
ror rate, empirical p-values were generated by 100,000 permuta-
tion tests using Max (T) permutation procedure implemented in 
PLINK software. The corrected values for multiple testing (cor-
rected empirical p-values) were then calculated.

Cox proportional hazards model

The Cox proportional hazards model (3) or Cox regression model 
[43], is widely used in the analysis of  time-to-event data [44-46].  

h(t|x) = h0(t)exp(β1SNPk + β2Sex + β3Alcohol + β4Smoking + β5
BMI)                              (3) 

where h(t|x) is the hazard at time t for a subject, h0(t) is the base-
line hazard function. Then the hazard ratio (HR) is defined as the 
ratio of  the predicated hazard function under two different values 
of  a predictor variable. The PHREG procedure in SAS fits the 
Cox model by maximizing the partial likelihood function.

Parametric survival models 

Several commonly used parametric distributions in survival mod-
els include exponential, Weibull, gamma, log-normal, and log-
logistic [44-47].

ln(T) = β0 + β1SNPk + β2Sex + β3Alcohol + β4Smoking + β5BMI 
+ ln(ε)                           (4)

where is T the time to event; ln(ε) is the natural log of  the error 
term. The exponentials of  the β coefficients may be interpreted 
as the time ratio (TR) [45-46,48]. If  TR >1, the event is less likely 
to occur; whereas if  TR <1, the event is more likely to happen. 
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The LIFEREG procedure in SAS fits parametric survival models, 
where the link function can be taken from a class of  distributions 
that include exponential, Weibull, log-normal, log-logistic, and 
gamma distributions. 

Supremum test for proportional hazards assumption

Both the graphical and numerical methods [49] were used to 
check the proportional hazards assumption in the ASSESS op-
tion of  PROC PHREG. These methods are based on cumulative 
sums of  martingale residuals over follow-up times or covariate 
values. The ASSESS option plots the cumulative score residuals 
against time for each independent variable and the RESAMPLE 
option computes the p-value of  a Kolmogorov-type supremum 
test based on a sample of  1,000 simulated residual patterns. A 
significant p-value indicates a poor fit. The parametric Weibull 
and the exponential regression models share the assumption of  
proportional hazards with the Cox regression model [50].

Evaluation criteria for goodness of  fit

The Akaike information criterion (AIC) statistic [51-52] and the 
Bayesian information criterion (BIC) statistic [53] were used to 
measure the goodness of  model fit and compare survival models.

AIC =  -2ln{p(x|θ)}+2k         (5)

and

BIC = -2ln{p(x|θ)}+kln n       (6) 

where x is the random variable, θ is the maximum likelihood es-
timate, k is the number of  parameters, and n is the sample size. 
Smaller AIC and/or BIC indicate a better model fit.

Survival analysis of  AAO of  T2D 

The PHREG procedure in SAS was used to fit the Cox mod-
el; while  the LIFEREG procedure was used to fit parametric 
survival models including the exponential, Weibull, log-normal, 
log-logistic, and gamma distributions. Multivariate Cox regression 
analysis and parametric survival analyses were conducted to detect 
associations of  each SNP with AAO adjusting for gender, alcohol 
use in the past month, BMI and smoking status, respectively. The 
AIC and BIC values were used to compare the Cox regression and 
parametric survival models [45, 54-57]. Descriptive statistics, Cox 
regression, and parametric models analyses were conducted with 
SAS v.9.4 (SAS Institute, Cary, NC, USA). SAS codes are listed in 
Appendix.

Linkage disequilibrium and Haplotype block

To examine the relationships among the SNPs within the EXT2 
gene, the pairwise linkage disequilibrium (LD) statistics (r2) based 
on the HapMap data were calculated in the HAPLOVIEW soft-
ware [58]. Haplotype blocks were built with stringent criteria, that 
SNPs within each block have strong LD with each other, some-
times resulting in splitting of  visually recognized blocks.

Results

Descriptive statistics and genotype quality control 

The demographic characteristics of  the subjects are presented 
in Table 1. There were slightly more females than males in both 
cases and controls. The age ranged from 46 to 90 years and AAO 
of  T2D ranged from 26 to 90 years. Two SNPs with MAF<5% 
were removed and all the left 20 SNPs were in Hardy-Weinberg 
equilibrium in the controls (p>0.05). 

Non-Diabetes Type 2 Diabetes
Number Sex, N (%) 2686 878

  Males 1051(39%) 424(48%)
  Females 1635(61%) 454(52%)

BMI, kg/m2

  Mean ± SD  28.8±5.2 32.4±6.7
  Range 16.1-61.3 16.8-64.4

Alcohol, N (%)
  No 930(35%) 418(48%)
  Yes 1752(65%) 456(52%)

Smoking, N (%)
  Never 1405(52%) 327(47%)

  Current 245(9%) 54(7%)
  Past 1032(39%) 331(46%)

Age, years
  Mean ± SD  65.4±11.4 69.2±10.6

  Range 46-90 46-90
AAO, years

  Mean ± SD  - 62.6±11.8
  Range - 26-90

Table 1. Descriptive characteristics of  cases and controls.

^

^

^
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Multiple linear and logistic regression analyses using 
PLINK  

We found that 1 SNP associated with risk of  T2D (rs7111879 
with p=6.33 x 10-3) and 3 SNPs associated with AAO (rs7111879, 
rs42376464 and rs4755230 with p=3.26 x 10-2, 5.79 x 10-5 and 
2.76 x 10-5, respectively) (Table 2). Interestingly, the same SNP 
rs7111879 showed associations with both the risk and AAO of  
T2D.  However, the associations of  rs7111879 with risk and AAO 
were not significant after a Bonferroni correction (p>2.27x10-3) 
or multiple testing correction using a permutation test (corrected 
p>0.05). The results of  other 2 AAO associated SNPs (rs42376464 
and rs4755230) remained significant after a Bonferroni correction 
(p<2.27x10-3) and multiple testing correction using a permutation 
test (corrected p=3.0x10-3 and 1.0x10-3, respectively).

Comparison of  Cox Regression and Parametric Models us-
ing PROC PHREG and PROC LIFEREG

Table 3 shows the comparisons through AIC and BIC for the 6 
types of  models of  the 3 SNPs associated with AAO (p<0.05). 
Overall, gamma distribution demonstrated the best model fit 
for all 20 SNPs, followed by the Weibull distribution. For ex-
ample, rs4755230, the gamma distribution has the smallest AIC 
(AIC=6635.5), and the AIC for Weibull distribution is slightly larg-
er (AIC=6641.5). BIC also indicated that Gamma (BIC=6683.2) 
and Weibull (BIC=6684.4) distribution had a similar fit and out-
performed the rest models.

Supremum test for proportional hazards assumption

Figures 1 and 2 display the observed standardized score pro-
cess with 20 simulated realizations from the null distribution for 
rs4755230 AA and AG genotypes, respectively. The plots showed 
that the observed process is atypical compared to the simulated 
realizations and revealed proportional hazards for the two geno-
types compared with GG. The Kolmogorov-type supremum test 
results based on 1,000 simulations for all the covariates are shown 
in Table 4. The proportional hazards assumption was valid for all 
the variables (p>0.05).

Survival analysis of  AAO using Cox regression, gamma and 
Weibull models 

The results based on the Cox regression and parametric survival 
analyses using gamma and Weibull models are  presented in Table 
5. All the HR values for 3 SNPs are larger than 1 while all the 
TR values are smaller than 1. For example, the genotype AA of  
rs4755230 has HR=1.63, which indicates that the participant with 
AA has a 63% higher hazard rate of  AAO than participant with 
GG. The TR using Weibull model is 0.93, which indicates that 
the participant with AA has a shortened AAO by 7% compared 
to participant with GG. In addition, the mean AAO was approxi-
mately 5.7 years earlier in the individuals who had two major allele 
(AA) of  rs4755230 (mean AAO=61.6 years) compared with those 
who were homozygous for the minor allele (GG) (mean AAO = 
67.3 years.

SNP Position Allelea MAFb HWEc OR-Diabetesd p-Diabetese EMP2f β-AAOg p-AAOh EMP2i

rs7111879 44090717 G 0.45 0.698 0.85(0.75,0.95) 6.33E-3 0.124 1.22(0.10, 2.33) 3.26E-2 0.515
rs4237646 44093796 G 0.26 0.352 0.87(0.74,1.04) 0.12 0.931 3.18(1.64,4.72) 5.79E-5 3.00E-3
rs4755230 44140920 G 0.27 0.312 0.91(0.77,1.07) 0.238 0.995 3.19(1.71,4.67) 2.76E-5 1.00E-3

Table 2. SNPs associated with risk and/or AAO of  T2D(p<0.05). 

a Minor allele; b Minor allele frequency; c Hardy-Weinberg equilibrium test p-value; d Odds ratio for diabetes based on multiple logistic 
regression; e p-value based on logistic regression; f  Corrected empirical p-value generated by 100,000 permutation tests using Max (T) 
permutation procedure implemented in PLINK; g Regression coefficient for AAO based on multiple linear regression; h p-value based 
on linear regression; i Corrected empirical p-value generated by 100,000 permutation tests using Max (T) permutation procedure 
implemented in PLINK.

Models AICa Rank BICb Rank AICc Rank BICd Rank AICe Rank BICf Rank

Cox 100336.1 6 10067 6 10009.3 6 10056.7 6 10010.7 6 10044.1 6

Weibull 6659.8 2 6702.7 2 6648.5 2 6691.5 2 6641.5 2 6684.4 2

Exponential 8969.3 5 9007.5 5 8968.9 5 9007.2 5 8959.2 5 8997.3 5

Log-logistic 6723.2 4 6766.1 4 6711.5 3 6754.4 3 6703.9 3 6746.9 3

Log-normal 6722.9 3 6765.8 3 6712.9 4 6755.8 4 6705.9 4 6748.8 4

Gamma 6653.8 1 6701.3 1 66642.6 1 6690.3 1 6635.5 1 6683.2 1

Table 3. Results of  the Cox regression and parametric models in survival analysis of  AAO of  T2D.

a AIC for rs7111879 adjusted for sex, alcohol use, smoking status, and BMI; b BIC for rs7111879 adjusted for sex, alcohol use, 
smoking status, and BMI; c AIC for rs4237646 adjusted for sex, alcohol use, smoking status, and BMI; d BIC for rs4237646 adjusted 
for sex, alcohol use, smoking status, and BMI; e AIC for rs4755230 adjusted for sex, alcohol use, smoking status, and BMI; f  BIC 
for rs4755230 adjusted for sex, alcohol use, smoking status, and BMI.

http://scidoc.org/IJBBS.php
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Figure 1. Explore plot for checking proportional hazards assumption for rs4755230AA compared with rs4755230GG.
Checking Proportional Hazards Assumption for rs4755230A_A
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Figure 2. Explore plot for checking proportional hazards assumption for
 rs4755230AG compared with rs4755230GG.

Linkage disequilibrium and haplotype block

All SNPs including three previous identified T2D associated 
SNPs (rs3740878, rs1113132 and rs11037909) were within a hap-
lotype block (Figure 3).  

Discussion

To our knowledge, this is the first application to evaluate the Cox 

regression and 5 parametric survival models in genetic association 
analysis of  the AAO of  T2D. It is also the first candidate gene 
study to examine the associations of  EXT2 gene polymorphisms 
with the AAO of  T2D.  In the procedure of   model selection, the 
parametric gamma model outperformed the other models in the 
genetic association of  the AAO of  T2D, meanwhile we identified 
1 SNP (rs7111879) associated with the risk of  T2D and 3 SNPs 
(rs7111879, rs42376464 and rs4755230) associated with the AAO 
of  T2D.  

http://scidoc.org/IJBBS.php


Wang KS et al. (2016) Model Selection in Survival Analysis of  EXT2 Gene Polymorphisms with Age at onset of  Type 2 Diabetes. Int J Bioinform Biol Syst. 1(1), 1-9.

6

 OPEN ACCESS                                                                                                                                                                                  http://scidoc.org/IJBBS.php

Variables Maximum 
Absolute 

Valuea

Replications Seed Pr > MaxAbsValb

Sex 1.139 1000 1000 0.141

BMI 1.313 1000 1000 0.053

Alcohol 0.367 1000 1000 0.989

Smoking1 0.445 1000 1000 0.967

Smoking2 0.56 1000 1000 0.776

rs4755230AA 1.187 1000 1000 0.752

rs4755230AG 0.88 1000 1000 0.964

Table 4.  Supremum Test for Proportional Hazards Assumption.

a Maximum absolute value based on the supremum  test  for  proportional  hazards  assumption; bThe p-value for the supremum  
test  for  proportional  hazards  assumption.

SNP GTa β(SE)b pc HR(95%CI)d β(SE)e pf TR(95%CI)g β(SE)h pi TR(95%CI)j

rs7111879

AA 0.206(0.103) 0.045 1.23(1.01,1.50) -0.033(0.016) 0.038 0.97(0.94,0.99) -0.036(0.017) 0.029 0.96(0.93,0.99)

AG 0.118(0.095) 0.217 1.13(0.93,1.36) -0.018(0.015) 0.225 0.98(0.95,1.01) -0.018(0.015) 0.246 0.98(0.95,1.01)

GG 1 1 1

rs42376464

TT 0.498(0.143) 0.0005 1.64(1.24,2.18) -0.079(0.022) 0.0003 0.92(0.89,0.96) -0.085(0.023) 0.0002 0.92(0.88,0.96)

GT 0.374(0.146) 0.011 1.45(1.09,1.94) -0.059(0.022) 0.008 0.94(0.90,0.98) -0.064(0.024) 0.007 0.94(0.90,0.98)

GG 1 1 1

rs4755230

AA 0.487(0.137) 0.0004 1.63(1.24,2.13) -0.078(0.021) 0.0002 0.93(0.89,0.96) -0.084(0.022) 0.0001 0.92(0.88,0.96)

AG 0.386(0.140) 0.006 1.47(1.12,1.94) -0.061(0.022) 0.005 0.94(0.90,0.98) -0.066(0.023) 0.004 0.94(0.90,0.98)

GG 1 1 1

Table 5.  Survival Analysis of  3 SNPs Associated with AAO using the Cox regression, gamma and Weibull models.

a  Genotype; b Regression coefficient and standard error (SE) based on the Cox regression;  c p-value based on the Cox regression;  
d Hazard ratio (HR) and 95% confident interval (CI) based on the Cox regression; e Regression coefficient and SE based on the 
Weibull model;  f  p-value based on the Weibull model;  gTime ratio (TR) and 95%CI based on the Weibull model;  h Regression 
coefficient and SE based on the gamma distribution;  i p-value based on the gamma model;  j Time ratio (TR) and 95%CI based 
on the gamma model. 

Cox regression and Weibull model have been extensively used to 
analyze incident diabetes [11-17] while non-parametric methods 
such as the Mann-Whitney and the Kruskall-Wallis tests [20], mul-
tiple linear regression [18] and Cox model [19] have been used 
to examine the associations of  genetic variants with the AAO 
of  T2D. However, no study was found to compare the Cox re-
gression and parametric survival models in genetic association 
analysis of  the AAO of  T2D. Our results provided the first em-
pirical evidence of  the model comparisons in genetic studies of  
the AAO of  T2D and showed that the parametric gamma and 
Weibull models performed better compared to Cox regression. 
It has been reported that the Weibull model shares the assump-
tion of  proportional hazards with the Cox regression model [50]. 
Particularly, if  the assumption is met, then Weibull distribution 
provides an alternative, fully parametric approach to the Cox 
model, while if  violated, other parametric models can be used 
with distributions rather than Weibull distribution [45]. In the 
present study, both the graphic and numeric methods in ASSESS 
statement in PROC PHREG showed that the assumption of  pro-
portional hazards is met. Therefore, Weibull model will be the 
first choice for genetic association study of  AAO of  T2D. In ad-
dition, the Weibull distribution provides similar HR estimates to 
Cox model; whereas a key strength of  Weibull model allows the 

simultaneous estimates of  treatment effects in terms of  both HR 
and TR, which may lead to increase or decrease in survival time  
[59]. The survival function could be assumed in a certain form 
such as exponential, Weibull, and so on, with one or more param-
eters whose values are unknown, to be estimated from the real 
data [44]. Furthermore, if  the shape of  the survival distribution is 
known, parametric regression models may produce more efficient 
estimates than Cox model [60].  

T2D is caused from the insulin resistance and β-cell dysfunction 
in the pancreas [61-63]. EXT2 gene is involved in the synthesis of  
heparin sulphate, abnormal bone growths (exostoses) [64] and in 
neural development [65]. The associations between three SNPs 
(rs3740878, rs1113132, rs11037909) in this gene and the risk of  
T2D have been previously reported in several studies [26, 35-
36] but was not replicated in other studies [27-34]. Recently, the 
rs3740878 risk T allele was found to be nominally associated with 
reduced insulin secretion in carriers of  the high-risk genotype 
compared with those with the low-risk genotype [29]; while two 
SNPs (rs3740878 and rs1113132) were associated with several 
measures of  insulin resistance such as glucose and insulin levels 
in Pima Indians [66]. Furthermore, the EXT2 was found to have 
increased expression in brain, which suggested a possible site of  
action as to where this gene could affect diabetes risk [63]. A more 
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recent study provided the first evidence on the relation between 
genetic defects in heparan sulfate synthesis and decreased pan-
creas anatomic volume with ensuing impaired beta-cell reserve 
capacity in carriers of  loss-of-function mutations in EXT [67]. 
In the present study, we showed the first evidence of  rs7111879 
associated with the risk of  T2D and 3 SNPs strongly associated 
with the AAO of  T2D. Furthermore, the T2D associated SNP 
rs1113132 identified in the Bernelot Moens et al. study [67] also 
showed borderline association with the risk of  T2D (p=0.0903) 
(data not shown). Additionally, three SNPs (rs3814767, rs7935138 
and rs4379834) revealed nominal associations with the risk of  T2D 
(p=0.0552, 0.0836 and 0.0835, respectively) (data not shown). 
However, the other two previously associated SNPs (rs3740878 
and rs11037909) were not available in the Marshfield dataset. To 
examine the relationship among the SNPs within the EXT2 gene, 
we identified a haplotype block for 22 SNPs including rs3740878 
and rs11037909 using the Hapmap data (Figure 3). We found 
that the three previously T2D risk associated SNPs (rs3740878, 
rs1113132, rs11037909) also had strong LD with the three nomi-
nal associated SNPs (rs3814767, rs7935138 and rs4379834 with 
r2=0.78, 0.72, and 0.89, respectively) in the present study. Our 
results support a role of  EXT2 in the development of  T2D.

EXT2 is considered as a putative tumor suppressor gene and is 
associated with hereditary multiple exostoses, which is an auto-
somal dominant condition characterized by growth of  multiple 
benign cartilage-capped tumors [22-23, 25, 68]. Recently, a gene 
expression study showed that the EXT2 gene activity in benign 
prostatic hyperplasia and prostate tumors was lower than that in 
normal prostate tissue [69]. Considering the comorbidity of  T2D 

with multiple cancers such as endometrial and prostate cancers 
[4-8], it may be hypothesized that EXT2 gene may be involved in 
the pathogenesis of  T2D and several cancers.   

There are several strengths in this study. First, this study simulta-
neously demonstrated the performance of  the semi-parametric 
Cox regression and five different parametric survival models in 
genetic association of  the AAO of  T2D with real data. Second, 
we examined 22 SNPs within the EXT2 gene and especially iden-
tified several genetic variants associated with the risk and AAO of  
T2D. Several limitations also need to be acknowledged. First, only 
one sample was used to examine the association of  EXT2 gene 
with the risk of  T2D due to limited data resources. Second, our 
current findings might be subject to type I error and need to be 
replicated in future studies. 

Conclusions

The present study reveals that parametric gamma and Weibull 
models performed better than semi-parametric Cox proportional 
hazards model and other parametric models (including exponen-
tial, log-normal, and log-logistic) in the genetic association of  the 
AAO of  T2D. Furthermore, this is the first candidate gene study 
which investigates the associations between EXT2 SNPs and the 
AAO of  T2D. These findings may serve as a resource for repli-
cation in other populations for future research on target genetic 
variation and the risk of  T2D. Further functional study of  the 
EXT2 gene will also help to better characterize the genetic basis 
of  the risk and AAO of  T2D. 
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Figure 3. Linkage disequilibrium structure (r2) within the EXT2 gene using the HapMap data.

http://scidoc.org/IJBBS.php


Wang KS et al. (2016) Model Selection in Survival Analysis of  EXT2 Gene Polymorphisms with Age at onset of  Type 2 Diabetes. Int J Bioinform Biol Syst. 1(1), 1-9.

8

 OPEN ACCESS                                                                                                                                                                                  http://scidoc.org/IJBBS.php

Acknowledgments 

Funding support for the Personalized Medicine Research Pro-
ject (PMRP) was provided through a cooperative agreement 
(U01HG004608) with the National Human Genome Research 
Institute (NHGRI), with additional funding from the National 
Institute for General Medical Sciences (NIGMS). The samples 
used for PMRP analyses were obtained with funding from Marsh-
field Clinic, Health Resources Service Administration Office of  
Rural Health Policy grant number D1A RH00025, and Wiscon-
sin Department of  Commerce Technology Development Fund 
contract number TDF FYO10718. Funding support for geno-
typing, which was performed at Johns Hopkins University, was 
provided by the NIH (U01HG004438). Assistance with pheno-
type harmonization and genotype cleaning was provided by the 
eMERGE Administrative Coordinating Center (U01HG004603) 
and the National Center for Biotechnology Information (NCBI). 
The datasets used for the analyses described in this manuscript 
were obtained from dbGaP at http://www.ncbi.nlm.nih.gov/gap 
through dbGaP accession number phs000170.v1.p1. This study 
was approved by the Internal Review Board (IRB), East Tennes-
see State University.

References 					   

[1].	  IDF (2009) IDF Diabetes Atlas. (4th edtn), Brussels. 
[2].	 Shin JK, Chiu YL, Choi S, Cho S, Bang H (2012) Serious psychological 

distress, health risk behaviors, and diabetes care among adults with type 2 
diabetes: the California Health Interview Survey 2007. Diabetes Res Clin 
Pract 95(3): 406-414. 

[3].	 Halter JB, Musi N, McFarland Horne F, Crandall JP, et al. (2014) Diabetes 
and cardiovascular disease in older adults: current status and future direc-
tions. Diabetes 63(8): 2578-2589. 

[4].	 Inoue M, Iwasaki M, Otani T, Sasazuki S, Noda M, et al. (2006) Diabetes 
mellitus and the risk of cancer: results from a large-scale population-based 
cohort study in Japan. Arch Intern Med 166(17): 1871-1877.

[5].	 Giovannucci E, Michaud D (2007) The role of obesity and related metabolic 
disturbances in cancers of the colon, prostate, and pancreas. Gastroenterol-
ogy 132(6): 2208-2225. 

[6].	 Spurdle AB, Thompson DJ, Ahmed S, Ferguson K, Healey CS, et al. (2011) 
Genome-wide association study identifies a common variant associated with 
risk of endometrial cancer. Nat Genet 43(5): 451-454. 

[7].	 Bansal D, Bhansali A, Kapil G, Undela K, Tiwari P (2013) Type 2 diabetes 
and risk of prostate cancer: a meta-analysis of observational studies. Prostate 
Cancer Prostatic Dis 16(2): 151-158.

[8].	 Wang KS, Owusu D, Pan Y, Xu C (2014) Common genetic variants in the 
HNF1B gene contribute to diabetes and multiple cancers. Austin Biomark 
Diagn 1(1): 5. 

[9].	 Elbers CC, Onland-Moret NC, Franke L, Niehoff AG, van der Schouw YT, 
et al. (2007) A Strategy to search for common obesity and type 2 diabetes 
genes. Trends Endocrinol Metab 18(1): 19-26. 

[10].	Almgren P, Lehtovirta M, Isomaa B, Sarelin L, Taskinen MR, et al. (2011) 
Heritability and familiality of type 2 diabetes and related quantitative traits 
in the Botnia Study. Diabetologia 54(11): 2811-2819.

[11].	Bozorgmanesh M, Hadaegh F, Azizi F (2011) Predictive performance of the 
visceral adiposity index for a visceral adiposity-related risk: type 2 diabetes. 
Lipids Health Dis 10: 88.  

[12].	Rosella LC, Manuel DG, Burchill C, Stukel TA; PHIAT-DM team (2011) 
A population-based risk algorithm for the development of diabetes: devel-
opment and validation of the Diabetes Population Risk Tool (DPoRT). J 
Epidemiol Community Health 65(7): 613-620.

[13].	Bozorgmanesh M, Hadaegh F, Saadat N, Azizi F (2012) Fasting glucose cut-
off point: where does the risk terminate? Tehran lipid and glucose study. Acta 
Diabetol 49(5): 341-348.

[14].	Adegbija O, Hoy W, Wang Z (2015) Predicting absolute risk of type 2 dia-
betes using age and waist circumference values in an aboriginal Australian 
community. PLoS One 10(4): e0123788.

[15].	Adegbija O, Hoy WE, Wang Z (2015) Corresponding waist circumference 
and body mass index values based on 10-year absolute type 2 diabetes risk 
in an Australian Aboriginal community. BMJ Open Diab Res Care 3(1): 

e000127.
[16].	Müller G, Wellmann J, Hartwig S, Greiser KH, Moebus S, et al. (2015) 

Association of neighbourhood unemployment rate with incident Type 2 dia-
betes mellitus in five German regions. Diabet Med 32(8): 1017-1022. 

[17].	Gunderson EP, Hurston SR, Ning X, Lo JC, Crites Y, et al. (2015) Lacta-
tion and Progression to Type 2 Diabetes Mellitus After Gestational Diabetes 
Mellitus: A Prospective Cohort Study. Ann Intern Med 163(12): 889-898. 

[18].	Papazoglou D, Papanas N, Papatheodorou K, Kotsiou S, Christakidis D, et 
al. (2006) An insertion/deletion polymorphism in the alpha2B adrenocep-
tor gene is associated with age at onset of type 2 diabetes mellitus. Exp Clin 
Endocrinol Diabetes 114(8): 424-427. 

[19].	Lehman DM, Hunt KJ, Leach RJ, Hamlington J, Arya R, et al. (2007) Hap-
lotypes of transcription factor 7-like 2 (TCF7L2) gene and its upstream re-
gion are associated with type 2 diabetes and age of onset in Mexican Ameri-
cans. Diabetes 56(2): 389-393.

[20].	Bellanné-Chantelot C, Carette C, Riveline JP, Valéro R, Gautier JF, et al. 
(2008) The type and the position of HNF1A mutation modulate age at di-
agnosis of diabetes in patients with maturity-onset diabetes of the young 
(MODY)-3. Diabetes 57(2): 503-508.

[21].	Wu YQ, Heutink P, de Vries BB, Sandkuijl LA, van den Ouweland AM, et 
al. (1994) Assignment of a second locus for multiple exostoses to the peri-
centromeric region of chromosome 11. Hum Mol Genet 3(1): 167-171. 

[22].	Hecht JT, Hogue D, Strong LC, Hansen MF, Blanton SH, et al. (1995) 
Hereditary multiple exostosis and chondrosarcoma: linkage to chromosome 
11 and loss of heterozygosity for EXT-linked markers on chromosomes 11 
and 8. Am J Hum Genet 56(5): 1125-1131. 

[23].	Wuyts W, Ramlakhan S, Van Hul W, Hecht JT, van den Ouweland AM, 
et al. (1995) Refinement of the multiple exostoses locus (EXT2) to a 3-cM 
interval on chromosome 11. Am J Hum Genet 57(2): 382-387. 

[24].	Blanton SH, Hogue D, Wagner M, Wells D, Young ID, et al. (1996) Heredi-
tary multiple exostoses: confirmation of linkage to chromosomes 8 and 11. 
Am J Med Genet 62(2): 150-159. 

[25].	Stickens D, Clines G, Burbee D, Ramos P, Thomas S, et al. (1996) The 
EXT2 multiple exostoses gene defines a family of putative tumour suppres-
sor genes. Nat Genet 14(1): 25-32. 

[26].	Sladek R, Rocheleau G, Rung J, Dina C, Shen L, et al. (2007) A genome-
wide association study identifies novel risk loci for type 2 diabetes. Nature 
445(7130): 881-885. 

[27].	Omori S, Tanaka Y, Takahashi A, Hirose H, Kashiwagi A, et al. (2008) As-
sociation of CDKAL1, IGF2BP2, CDKN2A/B, HHEX, SLC30A8, and 
KCNJ11 with susceptibility to type 2 diabetes in a Japanese population. 
Diabetes 57(3): 791-795. 

[28].	Lewis JP, Palmer ND, Hicks PJ, Sale MM, Langefeld CD, et al. (2008) As-
sociation analysis in African Americans of European-derived type 2 diabetes 
single nucleotide polymorphisms from whole-genome association studies. 
Diabetes 57(8): 2220-2225.

[29].	Moore AF, Jablonski KA, McAteer JB, Saxena R, Pollin TI, et al. (2008) 
Extension of type 2 diabetes genome-wide association scan results in the 
diabetes prevention program. Diabetes 57(9): 2503-2510. 

[30].	Herder C, Rathmann W, Strassburger K, Finner H, Grallert H, et al. (2008) 
Variants of the PPARG, IGF2BP2, CDKAL1, HHEX, and TCF7L2 genes 
confer risk of type 2 diabetes independently of BMI in the German KORA 
studies. Horm Metab Res 40(10): 722-726. 

[31].	Wu Y, Li H, Loos RJ, Yu Z, Ye X, et al. (2008) Common variants in CD-
KAL1, CDKN2A/B, IGF2BP2, SLC30A8, and HHEX/IDE genes are as-
sociated with type 2 diabetes and impaired fasting glucose in a Chinese Han 
population. Diabetes 57(10): 2834-2842.

[32].	Ren Q, Xiao J, Han X, Yang W, Ji L (2015) Impact of variants of the EXT2 
gene on type 2 diabetes and its related traits in the Chinese han population. 
Endocr Res 40(2): 79-82. 

[33].	Gutiérrez-Vidal R, Rodríguez-Trejo A, Canizales-Quinteros S, Herrera-Cor-
nejo M, Granados-Silvestre MA, et al. (2011) LOC387761 polymorphism 
is associated with type 2 diabetes in the Mexican population. Genet Test Mol 
Biomarkers 15(1-2): 79-83. 

[34].	Nemr R, Al-Busaidi AS, Sater MS, Echtay A, Saldanha FL, et al. (2013) Lack 
of replication of common EXT2 gene variants with susceptibility to type 2 
diabetes in Lebanese Arabs. Diabetes Metab 39(6): 532-536. 

[35].	Liu L, Yang X, Wang H, Cui G, Xu Y, et al. (2013) Association between 
variants of EXT2 and type 2 diabetes: a replication and meta-analysis. Hum 
Genet 132(2): 139-145. 

[36].	Chang YC, Liu PH, Yu YH, Kuo SS, Chang TJ, et al (2014) Validation of 
type 2 diabetes risk variants identified by genome-wide association studies in 
Han Chinese population: a replication study and meta-analysis. PLoS One 
9(4): e95045. 

[37].	McCarty CA, Peissig P, Caldwell MD, Wilke RA (2008) The Marshfield 
Clinic Personalized Medicine Research Project: 2008 scientific update and 
lessons learned in the first 6 years. Personalized Medicine 5(5): 529-541. 

http://scidoc.org/IJBBS.php


Wang KS et al. (2016) Model Selection in Survival Analysis of  EXT2 Gene Polymorphisms with Age at onset of  Type 2 Diabetes. Int J Bioinform Biol Syst. 1(1), 1-9.

9

 OPEN ACCESS                                                                                                                                                                                  http://scidoc.org/IJBBS.php

[38].	McCarty CA, Wilke RA, Giampietro PF, Wesbrook SD, Caldwell MD 
(2005) Marshfield Clinic Personalized Medicine Research Project (PMRP): 
design, methods and recruitment for a large population-based biobank. Per-
sonalized Medicine 2(1): 49-79. 

[39].	Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MA, et al. (2007)  
PLINK: a tool set for whole-genome association and population-based link-
age analyses. Am J Hum Genet 81(3): 559-575. 

[40].	Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, et al. 
(2006) Principal components analysis corrects for stratification in genome-
wide association studies. Nature Genetics 38: 904-909.

[41].	Wang KS, Liu X, Zheng S, Zeng M, Pan Y, et al. (2012) A novel locus for 
body mass index on 5p15.2: a meta-analysis of two genome-wide association 
studies. Gene 500(1): 80-84.

[42].	Dunn OJ (1961) Multiple Comparisons Among Means. Journal of the 
American Statistical Association 56(293): 52-64.

[43].	Cox DR (1972) Regression models and life-tables. Journal of the Royal Sta-
tistical Society. Series B (Methodological) 34(2): 187-220. 

[44].	Cantor AB (2003) SAS Survival Analysis Techniques for Medical Research. 
Springer Sciences and SAS Institute, Cary, USA. 

[45].	George B, Seals S, Aban I (2014) Survival analysis and regression models. J 
Nucl Cardiol 21(4): 686-694. 

[46].	Kasza J, Wraith D, Lamb K, Wolfe R (2014) Survival analysis of time-to-
event data in respiratory health research studies. Respirology 19(4): 483-492. 

[47].	Klein JP, Moeschberger ML (2003) Survival analysis: Techniques for cen-
sored and truncated data. Springer, New York. 

[48].	Hernán MA, Cole SR, Margolick J, Cohen M, Robins JM (2005) Structural 
accelerated failure time models for survival analysis in studies with time-
varying treatments. Pharmacoepidemiol Drug Saf 14(7): 477-491.

[49].	Lin DY, Wei LJ, Ying Z (1993) Checking the Cox Model with Cumulative 
Sums of Martingale-Based Residuals. Biometrika 80(3): 557-572. 

[50].	Lee ET, Go OT (1997) Survival analysis in public health research. Annu Rev 
Public Health 18: 105-134.

[51].	Akaike H (1979) A Bayesian Extension of the Minimum AIC Procedure of 
Autoregressive Model Fitting. Biometrika 66(2): 237-242. 

[52].	Akaike H (1981) Likelihood of a Model and Information Criteria. Journal 
of Econometrics 16(1): 3-14.

[53].	Simonoff JS (2003) Analyzing Categorical Data. Springer-Verlag, New York. 
[54].	Malloy EJ, Spiegelman D, Eisen EA (2009) Comparing measures of model 

selection for penalized splines in Cox models. Comput Stat Data Anal 53(7): 
2605-2616. 

[55].	Wang SJ, Kalpathy-Cramer J, Kim JS, Fuller CD, Thomas CR (2010)  Para-
metric survival models for predicting the benefit of adjuvant chemoradio-
therapy in gallbladder cancer. AMIA Annu Symp Proc 2010: 847-851. 

[56].	Ghadimi M, Mahmoodi M, Mohammad K, Zeraati H, Rasouli M, et al. 
(2011) Family history of the cancer on the survival of the patients with gas-
trointestinal cancer in northern Iran, using frailty models. BMC Gastroen-
terol 11: 104. 

[57].	Zhu HP, Xia X, Yu CH, Adnan A, Liu SF, et al (2011) Application of Weibull 
model for survival of patients with gastric cancer. BMC Gastroenterol 11: 1. 

[58].	Barrett JC, Fry B, Maller J, Daly MJ (2005) Haploview: analysis and visuali-
zation of LD and haplotype maps. Bioinformatics 21(2): 263-265. 

[59].	Carroll KJ (2003) On the use and utility of the Weibull model in the analysis 
of survival data. Control Clin Trials 24(6): 682-701. 

[60].	Allison PD (2010) Survival Analysis Using SAS: A Practical Guide. SAS In-
stitute, Cary, USA. 

[61].	Weyer C, Bogardus C, Mott DM, Pratley RE (1999) The natural history of 
insulin secretory dysfunction and insulin resistance in the pathogenesis of 
type 2 diabetes mellitus. J Clin Invest 104(6): 787-794. 

[62].	Staiger H, Machicao F, Stefan N, Tschritter O, Thamer C, et al. (2007) 
Polymorphisms within novel risk loci for type 2 diabetes determine beta-cell 
function. PLoS One 2(9): e832. 

[63].	Ho MM, Yoganathan P, Chu KY, Karunakaran S, Johnson JD, et al. (2013) 
Diabetes genes identified by genome-wide association studies are regulated 
in mice by nutritional factors in metabolically relevant tissues and by glucose 
concentrations in islets. BMC Genet 14: 10. 

[64].	Stickens D, Zak BM, Rougier N, Esko JD, Werb Z (2005) Mice deficient 
in Ext2 lack heparan sulfate and develop exostoses. Development 132(22): 
5055-5068. 

[65].	 Inatani M, Yamaguchi Y (2003) Gene expression of EXT1 and EXT2 during 
mouse brain development. Brain Res Dev Brain Res 141(1–2): 129-136. 

[66].	Rong R, Hanson RL, Ortiz D, Wiedrich C, Kobes S, et al. (2009) Asso-
ciation analysis of variation in/near FTO, CDKAL1, SLC30A8, HHEX, 
EXT2, IGF2BP2, LOC387761, and CDKN2B with type 2 diabetes and 
related quantitative traits in Pima Indians. Diabetes 58(2): 478-488.

[67].	Bernelot Moens SJ, Mooij HL, Hassing HC, Kruit JK, Witjes JJ, et al. 
(2014) Carriers of loss-of-function mutations in EXT display impaired pan-
creatic beta-cell reserve due to smaller pancreas volume. PLoS One 9(12): 
e115662. 

[68].	Bridge JA, Nelson M, Orndal C, Bhatia P, Neff JR (1998) Clonal karyotypic 
abnormalities of the hereditary multiple exostoses chromosomal loci 8q24.1 
(EXT1) and 11p11-12 (EXT2) in patients with sporadic and hereditary os-
teochondromas. Cancer 82(9): 1657-1663. 

[69].	Suhovskih AV, Tsidulko AY, Kutsenko OS, Kovner AV, Aidagulova SV, et al. 
(2014) Transcriptional Activity of Heparan Sulfate Biosynthetic Machinery 
is Specifically Impaired in Benign Prostate Hyperplasia and Prostate Cancer. 
Front Oncol 4: 79. 

http://scidoc.org/IJBBS.php

	Abstract 
	Keywords
	Introduction
	Materials and Methods
	Study subjects
	Statistical methods 
	Descriptive statistics and genotype quality control 
	Multiple logistic and linear regression models in PLINK software 
	Multiple testing 
	Cox proportional hazards model 
	Parametric survival models 
	Supremum test for proportional hazards assumption
	Evaluation criteria for goodness of fit  
	Survival analysis of AAO of T2D 
	Linkage disequilibrium and Haplotype block 


	Results
	Descriptive statistics and genotype quality control  
	Multiple linear and logistic regression analyses using PLINK  
	Comparison of Cox Regression and Parametric Models using PROC PHREG and PROC LIFEREG
	Supremum test for proportional hazards assumption
	Survival analysis of AAO using Cox regression, gamma and Weibull models 
	Linkage disequilibrium and haplotype block

	Discussion
	Conclusions
	Acknowledgments  
	References 

