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Introduction

The human gut microbiome consists of  a collection of  micro-
organisms, mainly bacteria, present in the gastrointestinal (GI) 
tract. Found with in the human gut microbiome are 1014 resident 
microorganisms, of  which includes bacteria, viruses, fungi and 
protozoa [1]. The distal most portion of  the gastrointestinal tract 
harbors majority of  microorganisms, here their biomass exceeds 
1011 cells per gram content [2]. Around 1,000 different bacterial 
species are found in the human gut, their relative distribution is 
dependent on host age, genetic background, environment, and 
lifestyle. More than 70% of  these bacterial species come from the 
phyla of  Firmicutes and Bacteroides [3, 4].

Numerous factors over the course of  one’s life contribute to the 
development of  the gut microbiomes ecosystem. One’s method 
of  delivery at birth, either vaginally or cesarean, alters the micro-
bial environment. Vaginal birth has been shown to promote the 

proper development of  the gut microbiome, due to the child’s 
exposure to the mother’s vaginal flora while passing through the 
birth canal [5]. Other factors such as infant consumption of  breast 
milk or formula, social and outdoor exposure, diet and lifestyle, as 
well as antibiotic use, can alter the microbial ecosystem [3, 4]. For 
example, a short-term change to either a strict animal or plant-
based diet alters the gut microbial content within 24 hours and 
can be reversed in 48 hours after cessation of  the strict diet [6].

The gut is known to interact with the brain via the enteric nervous 
system, the hypothalamus-pituitary-adrenal-gland (HPA) axis, and 
the central nervous system. The gut microbiome has the ability to 
alter brain development, functionality, and behavior by modifying 
immune, endocrine, metabolic, and neural signaling [7]. In gen-
eral, through the bidirectional communication network between 
the gut and the brain via multiple systems such as the spinal cord, 
the peripheral nervous system, and the endocrine system, the gut 
microbiome regulates many physiological and psychiatric process-
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Abstract

Greater than 90% of  serotonin (5-HT) in the human body is derived from Enterochromaffin (EC) Cells located within the 
most distal portion of  the gastrointestinal tract. Inside of  the large intestine can be found a population of  trillions of  symbiot-
ic microbes. Current evidence shows that these microbes influence host physiology through communication with the nervous 
system via metabolic byproducts. In the colonic environment, 5-HT is an important signaling molecule for peristalsis, enteric 
motor and secretory reflexes, and immune responses. 5-HT synthesis within the colon is regulated by host microbiota through 
stimulation of  EC from their short chain fatty acid by products. EC have been shown to release 5-HT into the colonic lumen 
after stimulation from various non-microbially produced products such as bile acids, allyl isothiocyanate, catecholamines, and 
tryptamine. Irregular 5-HT signaling has been shown to influence microbial colonization of  the colon. Further exploration is 
necessary to understand the complete mechanism of  microbial signaling and colonic 5-HT production.
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es in the body [3, 4, 8, 9]. For example, more than half  of  all the 
patients with irritable bowel syndrome exhibit mood disorders, 
modifications of  the gut microbiome can cause depressive behav-
iors, and antibiotic exposure is known to have psychiatric side-
effects such as anxiety, panic, and major depressive disorder [9].

Serotonin, or 5-HT, is produced in both the brain and the gas-
trointestinal tract, with greater than 90% being produced via EC 
in the distal gut lumen. 5-HT modulates numerous physiologi-
cal processes from mood disorders to gastrointestinal motility 
[10]. The two main rate-limiting enzymes for 5-HT synthesis are 
tryptophan hydroxylase 1 (Tph1), found in EC, and tryptophan 
hydroxylase 2 (Tph2) in various neurons of  the brain [10]. The 
gut microbiome has been shown to upregulate Tph1 synthesis, 
and thus 5-HT production from their SCFA metabolites [11]. 
Butyric acid, a common microbial waste product of  fermenta-
tion, specifically has been found to offer a significant role in 5-HT 
production, as an inducer for the Tph1 transcription factor ZBP-
89 [11]. Numerous other stimulatory factors such as bile acids 
(Deoxycholic acid and lithocholic acid), allyl isothiocyanate, and 
catecholamines have been found to contribute to the release of  
5-HT from EC [12, 13].

It is known that serotonin is produced via enterochromaffin cells 
within the gut mucosal layer and that this gut-derived serotonin 
has numerous physiological roles. In this review, we summarize 
the literature regarding the relationship between the gut microbi-
ome and serotonin. Our goal is to present the current understand-
ing of  how the gut microbiome contributes to the synthesis of  
serotonin and the effects serotonin has on the peripheral systems.

Serotonin

Serotonin, 5-hydroxytryptamine or 5-HT, is a neurotransmitter 
derived from the essential amino acid tryptophan with diverse 
physiological functions. In the brain, it is involved in the modula-
tion of  many behavioral processes such as mood and reward. In 
the central nervous system (CNS) 5-HT is predominantly pro-
duced by neurons. However, most serotonin in the body is out-
side the CNS, to interact with a variety of  seven families of  sero-
tonin receptors [14]. The blood-brain barrier separates serotonin 
in the CNS from that in the peripheral systems. More than 90% 
of  5-HT in the body is produced in the peripheral systems via the 
enterochromaffin cells (EC), which are specialized endocrine cells 
in the intestinal epithelia [15, 16].

The rate-limiting enzyme of  the 5-HT synthesis in the EC is 
Tph1, converting L-tryptophan to L-5-hydroxytryptophan, which 
is further converted by L-amino acid decarboxylase (AAAD) into 
5-HT [17-19]. In neurons, a different hydroxylase, Tph2, is used 
[16, 20]. The amino acid L-tryptophan is one of  the nine essential 
amino acids that the human body cannot produce and therefore 
must be acquired from diet.

5-HT signaling in the gastrointestinal tract and the central nerv-
ous systems occurs through the activation of  seven families of  
serotonergic receptors: 5-HT1 through 5-HT7. In the gastroin-
testinal tract 5-HT3 and 5-HT4 are the most prominent. How-
ever, they operate differently; the 5-HT3 receptor is a ligand-gated 
Na+ and K+ cation channel, while the 5-HT4 receptor is a me-
tabotropic G protein-coupled receptor (GPCR) [21]. 5-HT3 is 

highly expressed in afferent vagal neurons, which are known to 
innervate the intestinal mucosa and upon activation can directly 
communicate with the CNS [22]. 5-HT3 receptors are also known 
to regulate colonic motility and peristalsis [23]. While the GPCR 
5-HT4 regulates gastrointestinal motility, visceral pain, immune 
regulation, and epithelial secretions [24].

Thus, 5-HT is multi-functional as a growth factor, paracrine fac-
tor, and a neurotransmitter, with a vast majority of  5-HT being 
derived from EC in the gut. A host of  physiological processes 
are regulated by 5-HT including depression, sleep patterns, food 
appetite, libido, and temperature homeostasis [14, 25-27]. 5-HT 
has been shown to modulate gastrointestinal motility, platelet 
function, enteric motor and secretory reflexes, immune respons-
es, bone development, and cardiac functionality. It has also been 
shown that the microbiota can impact hippocampal 5-HT levels 
showing a connection between the gut and brain serotonergic sys-
tem [28]. Different concentrations of  5-HT can alter the micro-
bial composition of  the colonic environment. Increased levels of  
gut 5-HT secretion produce a microbial environment that has a 
higher probability of  leading to severe colitis, showing a connec-
tion between the serotonin-microbiota axis and gut inflammation 
[29]. Irregular 5-HT signaling has been observed in gastrointesti-
nal disorders such as inflammatory bowel disease (IBD) and colo-
rectal cancer [29]. It is evident that regulated 5-HT production is 
essential to numerous physiological processes, and that a combi-
nation of  host genetics, physiology, and the gut microbiota play a 
significant role in regulating 5-HT production.

Microbiome Acting On Serotonin

EC act as pressure sensors for the lumen of  the colon, where 
an increase in pressure can increase luminal 5-HT concentrations 
[30]. EC also act as polymodal chemosensors activated by multi-
ple substances. One study identified three categories of  stimulat-
ing substances that promote EC to release 5-HT, including allyl 
isothiocyanate (AITC) - a chemical irritant from dietary wasabi 
and mustard, fatty acid prokaryotic fermentation products (bu-
tyrate, isobutyrate, and isovalerate), and host-derived catechola-
mines (dopamine, epinephrine, and norepinephrine) [12]. Bile ac-
ids are also thought to have a stimulatory effect on EC to release 
5-HT. Two bile acids deoxycholic acid (DCA) and lithocholic acid 
(LCA) activate a cell-surfaced G-protein coupled receptor, TGR5, 
to release the peristaltic transmitter 5-HT in to the lumen [31]. 
In addition, endospore-forming microbes, such as Clostridium 
sporogenes, produce the microbial metabolites cholate, deoxy-
cholate, p-aminobenzoate (PABA), α-tocopherol, and tyramine, 
which have been shown to promote 5-HT synthesis from cultured 
rat colonic EC [9].

The effect of  microbial stimulation of  5-HT release may or may 
not depend on EC. Some microbes may directly participate in 
the chemical synthesis of  5-HT. Multiple bacterial strains are 
able to produce 5-HT in vitro using tryptophan as the substrate 
[32]. Tryptophan decarboxylases are also present in the intesti-
nal microbiota. For example, two bacterial species, Clostridium 
sporogenes and Ruminococcus gnavus express enzymes capable 
of  decarboxylating tryptophan to tryptamine [33]. One model 
suggests that dietary, non-assimilated tryptophan in the colonic 
lumen is converted by secreted prokaryotic decarboxylases in to 
tryptamine, which induces serotonin release from guinea pig EC 
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[33, 34]. The level of  tryptamine in feces was significantly ele-
vated in mice with normal, non-pathogen microbiota, compared 
to germ-free mice [35]. The increased presence of  tryptamine in 
conventional mice, indicates that the gut microbiome plays a role 
in the production of  the EC stimulator, tryptamine. Interestingly 
it was demonstrated that tryptamine activates the 5-HT4 recep-
tor and increases anion-dependent fluid secretions in the colon, 
which is key for regulating gut motility mechanisms like peristalsis 
[24, 36].

Additionally, the gut microbiota stimulates 5-HT production in 
EC through its prokaryotic metabolites, mainly short-chain fatty 
acids (SCFAs) (Figure 1). SCFAs are produced by the gut micro-
biota through the process of  fermentation utilizing incomplete 
carbohydrates such as starch and fiber. The majority of  SC-
FAs found in the intestinal lumen are acetate, propionate, and 
butyrate, none of  which can be produced by human cells [37, 
38]. These three SCFAs are produced in various bacterial species 
through different metabolic pathways. Acetate is produced mostly 
by enteric bacteria such as Akkermansia muciniphila, Bacteroides 
spp., Bifidobacterium spp., Prevotella spp., Ruminococcus spp.
[39]. Propionate is produced in two different pathways; the suc-
cinate pathway by Bacteroidetes spp. and the lactate pathway by 
Firmicutes spp. Butyrate is produced through the classical path-
way, which involves the condensation of  conventional acetyl-CoA 
by various Firmicutes spp [31]. Butyrate has been identified as 
the preferred energy source for host colonocytes [39]. The gen-
eral ratio of  acetate, propionate, and butyrate is approximately 
3:1:1, a ratio heavily influenced by host diet and intestinal mi-
crobial species composition [33, 39], as different phyla in the gut 
microbiome are enriched with different cocktails of  prokaryotic 
glycosidases, lipases, and peptidases [6]. Before propionate and 
butyrate are further metabolized by the liver (propionate) and the 
colon (butyrate), these SCFA molecules directly activate G-pro-
tein coupled receptors and affect host physiology [39], including 
promoting 5-HT synthesis in EC [10]. SCFAs have been shown to 
upregulate Tph1 levels in EC, and as Tph1 is the rate-limiting en-
zyme in the synthesis of  serotonin, SCFAs thus likely drive 5-HT 
production by EC [29]. In vitro, human EC treated with sodium 
acetate and sodium butyrate results in increased Tph1 expression 
[10]. Butyrate appears to play a direct role in the production of  
Tph1 mRNA. Butyrate is known as a histone deacetylase (HDAC) 

inhibitor; this allows butyrate to prevent the removal of  acetyl 
groups from DNA histone proteins [40]. This action allows DNA 
to remain accessible to larger transcription factors. ZBP-89 is one 
such transcription factor found in colonic EC that is a butyrate-
induced zinc finger which binds to GC-rich DNA elements [40]. 
In one mouse study [40], it was shown that ZBP-89 directly binds 
a mouse Tph1 DNA promoter region, thus elevating transcrip-
tion of  Tph1 mRNA (Figure 1) [11, 39, 40]. When the Tph1 gene 
is knocked out (KO) in a mouse model, mice lack >90% of  intes-
tinal and serum 5-HT levels, further emphasizing the importance 
of  Tph1 in 5-HT synthesis [41]. Acetate and propionate in the 
large intestine lumen drive GPR43+ host colonocytes to secrete 
Glucagon-like-peptide-1 (GLP-1) and Peptide YY (PYY) [22, 39]. 
EC express the GLP-1and PYY Y1 receptors [42], and upon ap-
propriate ligand binding EC cells release 5-HT into the colonic 
lumen [22] (Figure 1). Butyrate functions in a direct manner by 
upregulating Tph1 mRNA, while acetate and propionate stimu-
late release of  GLP-1 and PYY, which then signal EC to release 
5-HT. Thus, for EC cells, butyrate likely drives 5-HT production 
while acetate and propionate regulate 5-HT release.

In germ-free mice, serum concentrations of  5-HT tend to be low-
er than colonized mice. Mice raised with a human gut microbiome 
exhibited more than twice the Tph1 transcription and a 20% in-
creasein Tph1 compared to germ-free mice [11]. When the micro-
biome was introduced to germ-free mice, they exhibited elevated 
Tph1 expression and restoration of  serum 5-HT concentration 
[10, 43]. These observations show that the gut microbiome does 
influence Tph1 expression and in turn, 5-HT production.

Serotonin Acting On The Microbiome

The influence that the gut microbiome has on host physiology 
through its metabolic byproducts, neural influence, and immune 
modulation is becoming more apparent in the scientific commu-
nity. However, less is known about the change in the ecosystem of  
the gut microbiome in response to host physiological irregulari-
ties. Many patients with gastrointestinal disorders such as inflam-
matory bowel disease (IBD) tend to exhibit dysbiosis of  the gut 
microbiome and have irregular 5-HT signaling [29]. It is unclear 
as to whether irregular 5-HT signaling leads to microbial dysbiosis 
or vice versa. However, one study showed [29] that varied 5-HT 

Figure 1. The release of  5-HT and upregulation of  TpH1 mRNA via short chain fatty acid signaling from the gut microbi-
ome.
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signaling regulated gut bacteria growth in a species-specific man-
ner that created an environment more susceptible to colitis. When 
5-HT was introduced to the gut lumen at increasing concentra-
tions, bacterial growth was inhibited, and obligate anaerobes were 
the most affected. The researchers in one study [29] compared 
the gut microbial composition of  Tph1 knockout (KO) mice to 
conventional wild-type (WT) mice. The Tph1 KO mice showed 
a significant difference in the composition of  their microbial 
ecosystem compared to the WT mice, further emphasizing that 
host genetic background strongly determines a host’s unique 
microbiota signature. Further, in Tph1 KO mice, fecal sample 
analysis revealed significantly decreased levels of  the SCFAs ac-
etate, butyrate, and propionate [29]. In contrast, the number of  
endospore-forming bacteria in the gut is increased as levels of  
luminal 5-HT are increased. It is known that about 50% of  5-HT 
produced in the gut is the product of  endospore-forming bacteria 
from families such as Clostridiaceae and Turicibacteraceae [44]. 
These results suggest that not only does the gut microbiome af-
fect 5-HT synthesis, but also that 5-HT has the ability to alter the 
microbial composition. 5-HT signaling, and endospore-forming 
bacteria colonization may form a positive feedback mechanism, 
that interfaces with host status of  genetics, diet, and environmen-
tal influence on development of  gut bacterial species.

Conclusion

Approximately 10-100 trillion communalistic microbial organisms 
colonize the human body in various sites including the oral cav-
ity, skin, female vagina, and most prominently the distal portion 
of  the gastrointestinal tract [45]. The bacterial organisms found 
in the colon play a pivotal role in human health, and specifically 
5-HT production. One of  the main ways in which the gut bac-
teria can influence 5-HT production is through the synthesis of  
SCFA metabolites from fiber and starch fermentation. Butyrate 
specifically has been identified as one SCFA that promotes the 
upregulation of  the 5-HT rate-limiting enzyme, Tph1. Interest-
ingly it was also identified that increased 5-HT concentrations in 
the gut lumen promote the growth of  spore-forming bacteria, 
and these same spore-forming bacteria produce metabolites that 
promote further synthesis of  5-HT. Some gut bacterial organisms 
exhibit symbiotic relationships with their human hosts. One ex-
ample is the production of  SCFA’s, bacterial organisms can pro-
duce SCFA’s as byproducts of  fermentation. However, humans 
alone are not capable of  producing SCFA’s. Bacterial organisms 
use the gastric environment to grow and ferment the dietary 
starch and fiber to produce energy. While humans use the SCFA’s 
for various purposes from energy sources to signal transduction. 
The relationship between human host and bacterial organism may 
have once been viewed as adversarial, but very may well be one 
of  companionship.

Thus, the field of  the microbiota-gut-brain (MGB) axis is sup-
ported by numerous studies that identify the importance of  the 
gut microbiome and its metabolites in the production of  5-HT, 
specifically its EC upregulation of  the rate-limiting enzyme Tph1. 
We also presented the research on the influence that 5-HT can 
have on the composition of  the gut microbial environment. Fur-
ther investigation is necessary to understand the overarching im-
pact the gut microbiome plays on human health, as well as how 
lifestyle, diet, genetics, and host physiology may impact the com-
position of  the human gut microbiome. Further investigation in 

to the gut microbiome and its symbiotic relationship with human 
health is necessary for the advancement of  our scientific commu-
nity and various healthcare sectors. Questions include how can an 
individual’s gut microbiota change with age, diet, exercise, and or 
injury. Do some microbial signatures make us more or less prone 
to mental disorders or physical disease?
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